- 利用python 执行统计模型:
渔好学
python
利用python执行统计模型:http://www.statsmodels.org/stable/index.html
- Python江苏南京二手房源爬虫数据可视化分析大屏全屏系统 开题报告
2401_84562041
程序员信息可视化python爬虫
Python****江苏南京二手房源爬虫数据可视化分析大屏全屏系统开题报告XXXX大学**/学校/**学院毕业论文(设计)开题报告书学生姓名所属学院学号专业班级论文(设计)题目Python江苏南京二手房源爬虫数据可视化分析大屏全屏系统设计与实现指导教师姓名(职称)开题日期选题依据:1.研究背景与意义;2.国内外研究(应用与发展)现状。1**:研究背景与意义**Python江苏南京二手房源爬虫数据可
- 【开源代码解读】AI检索系统R1-Searcher通过强化学习RL激励大模型LLM的搜索能力
accurater
人工智能深度学习R1-Searcher
关于R1-Searcher的报告:第一章:引言-AI检索系统的技术演进与R1-Searcher的创新定位1.1信息检索技术的范式转移在数字化时代爆发式增长的数据洪流中,信息检索系统正经历从传统关键词匹配到语义理解驱动的根本性变革。根据IDC的统计,2023年全球数据总量已突破120ZB,其中非结构化数据占比超过80%。这种数据形态的转变对检索系统提出了三个核心的挑战:语义歧义消除:如何准确理解"A
- 数据分析大数据面试题大杂烩01
爱学习的菜鸟罢了
大数据flink大数据面试hivehadoopkafka
互联网:通过埋点实时计算用户浏览频次用优惠券等措施吸引用户,通过历史信息用非智能学习的title方式构造用户画像(抖音,京东)电信,银行统计营收和针对用户的个人画像:处理大量非实时数据政府:健康码,扫码之后确诊,找出与确诊对象有关联的人订单订单表(除商品以外所有信息),商品详情表,通过搜集用户title进行定制化推荐点击流数据通过埋点进行用户点击行为分析FLINK一般用来做实时SPARK一般用来做
- golang字符串常用的系统函数
平谷一勺
Golang基础篇golangjava开发语言go字符串基本函数字符串常用方法
1.说明字符串在开发中,使用频率非常高,所以我们需要掌握字符串的常用方法。2.统计字符串的长度按字节len(str)go的编码统一为utf-8(ascii的字符字母和数字占一个字节,汉字占三个字节)str:="hello"fmt.Println(len(str))//5str="hello杭"fmt.Println(len(str))//83.字符串遍历处理带有中文的字符串r:=[]rune(st
- µC/OS-II ticks计数器介绍
小灰灰07
单片机嵌入式硬件
1、ticks计数器的作用1.1时间基准:ticks计数器为系统提供时间基准,用于实现延时、超时和时间片轮转调度。1.2任务调度:在每个时钟节拍中断中,µC/OS-II会检查是否有任务需要唤醒(例如延时结束或超时),并触发任务调度。1.3统计信息:ticks计数器可以用于统计系统的运行时间、任务执行时间等。2、ticks计数器的实现2.1时钟节拍中断:硬件定时器以固定的时间间隔触发中断,µC/OS
- Python之项目课
稍微认真一点
python数据库开发语言
1.项目准备1.1.项目创建此处省略一万字...1.2.项目目标创建数据库movie并设置编码格式,并完成t_user(用户信息表)、t_movie(电影信息表)的创建任务;完成用户登录功能,登录成功之后跳转到电影主界面;完成电影排行榜和关键字电影查询功能;完成电影信息图表统计(选作)1.3.项目结构dao |--__init__.py |--movie_dao.py #电影dao层接口类 |
- DeepSeek面试——分词算法
mzgong
人工智能算法
DeepSeek-V3分词算法一、核心算法:字节级BPE(Byte-levelBPE,BBPE)DeepSeek-V3采用字节级BPE(BBPE)作为核心分词算法,这是对传统BPE(BytePairEncoding)算法的改进版本。其核心原理是将文本分解为字节(Byte)序列,通过统计高频相邻字节对的共现频率进行逐层合并,最终形成128K扩展词表。二、BBPE的核心优势1.多语言统一处理能力跨语言
- 应用统计学学什么科目_统计学考研科目分别有哪些?你都知道吗
心言星愿
应用统计学学什么科目
在现实社会社会中统计学的应用范围是比较广泛的,想要报考统计学的朋友也是不再少数的,那么问题就来了关于统计学应该要学习哪一些科目呢,下面就来详细的看一下关于统计学方向具体的统计学考研科目分别有那些。首先对于统计学来讲英语政治史必然的初试科目,而专业课的考研科目具体是什么还是要看你选择的院校的实际出题情况了,所以在确定了考研科目之后一定要在在确定一下你想去的高校,以便能够更好的准备。在来看一下在学校方
- 1985-2024年地级市人工智能专利数据
经管数据库
人工智能
《地级市人工智能专利数据(1985-2024)》于2025年1月完成最新更新。数据聚焦于中国各地级市,时间跨度设定为1985年至2024年。在数据整理过程中,参照《关键数字技术专利分类体系(2023)》,依据其中“人工智能”类技术的专利分类号,结合国家知识产权局所提供的信息,对各地每年的专利申请展开搜索与匹配。在此基础上,从众多专利申请中精准筛选出属于“人工智能”类别的专利,并进行数量统计,数据涵
- 【零基础JavaScript入门 | Day1】从“消费记账“案例学编程基础 ⭐表格制作+数据类型转换全解析
helbyYoung
JavaScrip学习javascript学习
【零基础JavaScript入门|Day1】从"消费记账"案例学编程基础⭐表格制作+数据类型转换全解析今日学习重点:✅数据与现实的映射关系→网页表格如何承载生活数据✅变量容器的本质→用let管理三大消费支出✅隐式类型转换技巧→+prompt()输入处理的妙用✅模板字符串实战→动态生成消费报表案例亮点:1️⃣用户交互三部曲:通过prompt()实现饮食/交通/娱乐费用的分步输入2️⃣自动统计系统:t
- TF-IDF:文本挖掘中的关键词提取利器
巷955
tf-idf
引言在自然语言处理(NLP)和文本挖掘中,TF-IDF是一种常用的技术,用于评估一个词在文档中的重要性。它不仅在信息检索领域广泛应用,还在文本分类、关键词提取等任务中发挥着重要作用。本文将详细介绍TF-IDF的原理,并通过一个实际的代码示例来展示如何使用TF-IDF从《红楼梦》中提取核心关键词。1.什么是TF-IDF?TF-IDF是一种统计方法,用于评估一个词在文档中的重要性。它由两部分组成:-T
- 【QT教程】QT6硬件数据库编程 QT硬件数据库
QT性能优化QT原理源码QT界面美化
qtqt6.3qt5c++QT教程
QT6硬件数据库编程使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QT6硬件数据库编程基础1.1QT6数据库引擎概述1.1.1QT6数据库引擎概述
- 审核通过≠报名成功!提醒下报了名的软考考生,这件事别忘了做!
公众号-希赛网
学习方法职场和发展
截止至3月13日18:00,江苏、贵州、山西、大连、安徽、福建、澳门、甘肃、新疆、兵团、四川、浙江、辽宁、吉林、宁波等考区均已开通报名入口。已经报名和准备报名的考生,小希提醒大家,审核通过≠报名成功!一、审核通过≠报名成功虽然软考对考生的学历、专业、工作年限等没有要求,但是部分考区还是会对考生上传的材料、填写的报考信息等进行审核,以确认证件照片满足要求并符合报考属地化管理原则。报名系统并不会以任何
- 2025 年最值得收听的 AI 播客推荐!助你轻松掌握人工智能前沿动态!
真智AI
人工智能开发语言机器学习
如今,几乎每个人都被告知需要提升技能,而当前许多组织最看重的技能之一就是人工智能(AI)。学习AI相关技能通常涉及数学、统计学和机器学习,但除此之外,你还需要了解行业趋势、业内人士的观点以及各大公司的动态。然而,学习并不意味着时刻都要埋头苦读!有时候,你需要给大脑一个喘息的机会,同时依然能获取有价值的信息。而收听AI相关的播客,就是一个轻松高效的方式。以下是2025年你必须关注的AI播客!1.Th
- 智商测试原理全解析:从心理学到统计学,一文读懂(包含数据接口
2401_84193787
职场发展职场和发展求职招聘单一职责原则
智力测验(IntelligenceTest)是有关人的普通心智功能的各种测验的总称,又称普通能力测验。编制这类测验的目的是为了综合评定人的智力水平。早期编制的智力测验多采取个人测验的形式,这是单独评估心智功能的最好方法。国际上常用的个人智力测验主要有两种:斯坦福-比奈智力量表和韦克斯勒智力量表。现在常用测验包括:比奈-西蒙智力量表、韦克斯勒智力量表、斯坦福一比奈智力量表、瑞文标准智力测验、军队甲种
- YashanDB SWAP 表空间管理
数据库
数据库操作(例如orderby,hashjoin,统计信息收集等)首先会通过数据库虚拟内存(通过VM_BUFFER_SIZE参数控制)缓存计算的中间结果,但如果虚拟内存不足时,需要通过将虚拟内存交换到SWAP表空间来释放内存,必要时再将内存从SWAP表空间换入。SWAP表空间是非持久化表空间,只用于数据库虚拟内存的换入换出,因此持久化对象(例如表、索引等)不能创建在SWAP表空间。SWAP表空间空
- Linux进程和计划管理命令
IT 小旋风
linux
查看进程查看静态的进程统计信息命令:ps选项a:显示当前终端下的所有进程信息u:使用以用户为主的格式输出进程信息x:显示当前用户在所有-e:显示系统内的所有进程信息-l:使用长格式显示进程信息-f:使用完整的格式显示进程信息示例:若想以用户为主的格式查看当前终端下的所有进程信息,可以使用命令psau,会看到类似如下的输出(部分示例数据):plaintextUSERPID%CPU%MEMVSZRSS
- 工程化与框架系列(30)--前端日志系统实现
一进制ᅟᅠ
前端工程化与框架前端状态模式
前端日志系统实现引言前端日志系统是应用监控和问题诊断的重要工具。本文将深入探讨前端日志系统的设计与实现,包括日志收集、处理、存储和分析等方面,帮助开发者构建完整的前端日志解决方案。日志系统概述前端日志系统主要包括以下方面:日志收集:用户行为、性能指标、错误信息等日志处理:过滤、格式化、压缩等日志存储:本地存储、远程上传等日志分析:统计分析、可视化展示等实时监控:告警、通知等日志系统实现日志管理器/
- L2-4 吉利矩阵(优化剪枝版)
终相守丶空白
深度优先算法图论
L2-4吉利矩阵暴力解法:L2-4吉利矩阵-CSDN博客作者陈越单位浙江大学所有元素为非负整数,且各行各列的元素和都等于7的3×3方阵称为“吉利矩阵”,因为这样的矩阵一共有666种。本题就请你统计一下,把7换成任何一个[2,9]区间内的正整数L,把矩阵阶数换成任何一个[2,4]区间内的正整数N,满足条件“所有元素为非负整数,且各行各列的元素和都等于L”的N×N方阵一共有多少种?输入格式:输入在一行
- 文本挖掘+情感分析+主题建模+K-Meas聚类+词频统计+词云(景区游客评论情感分析)
请为小H留灯
聚类机器学习支持向量机人工智能深度学习
本文通过情感分析技术对景区游客评论进行深入挖掘,结合数据预处理、情感分类和文本挖掘,分析游客评价与情感倾向。利用朴素贝叶斯和SVM等模型进行情感预测,探讨满意度与情感的关系。通过KMeans聚类和LDA主题分析,提取游客关心的话题,提供优化建议,为未来研究提供方向。1.引言1.1背景与目的1.2旅游业发展与游客评论的重要性2.数据处理与分析2.1数据加载与预处理2.2游客评分与点赞量分析3.评论内
- Python中Pandas常用函数及案例详解
程序员爱技术
pythonpandas开发语言数据分析大数据
Pandas是一个强大的Python数据分析工具库,它为Python提供了快速、灵活且表达能力强的数据结构,旨在使“关系”或“标签”数据的操作既简单又直观。Pandas的核心数据结构是DataFrame,它是一个二维标签化数据结构,可以看作是一个表格,其中可以存储不同类型的数据。下面是Pandas中一些关于导入、导出、查看、检查、选取、清理、合并、统计等常用函数的详解以及案例说明:第一、导入函数P
- 《计量地理学》实习指南
zmg18213828575
一、EXCEL中常用的函数(部分)操作方法:打开EXCEL→输入原始数据→选择fx粘贴函数→函数分类中选择统计→从函数名中选择我们所需要的函数→确定→在数值中输入或选入计算数据范围(如A1:A10)则结果就会出来。具体的函数及其含义:AVERAGE计算参数平均值CORREL求相关系数DEVSQ求离差平方和FTESTF检验的结果GEOMEAN正数数组的几何平均数INTERCEPT一元回归线的载距(Y
- 伍德里奇计量经济学第四章计算机答案,计量经济学中文答案 伍德里奇
weixin_39950470
第1章计置经济学的性质与经济数据1.1复习笔记一、计量经济学由于计量经济学主要考虑在搜集和分析非实验经济数据时的固有问题,计量经济学己从数理统计分离出来并演化成一门独立学科。1.非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。非实验数据有时被称为观测数据或回顾数据,以强调研宄者只是被动的数据搜集者这一事实。2.实验数据通常是在实验环境中获得的,但在社会科学中要得到这些
- Hive-基础入门
数据牧马人
hivehadoop数据仓库
目录第1章Hive基本概念第2章、安装步骤:1、上传jar包至/usr/local/soft2、解压并重命名3、配置环境变量4.配置HIVE文件第3章hive中数据库的操作1、hiveDDL操作2、HiveDML操作3、hive的本地模式4、hive表中数据加载方式5、hive中的流量统计6、hive数据导出第4章hive中的数据类型1.基本数据类型2.复杂数据类型第5章hive中的一个emp案例
- TestHubo在Windows环境下安装与配置教程
城南花开时
TestHubo安装教程
TestHubo是一款开源免费的全栈测试工具,包括项目管理、用例管理、测试计划、统计分析等模块,支持功能测试、接口测试、WEB测试、APP测试、性能测试等类型,产品功能完善,简洁易用、开源免费,本文将介绍如何在Windows环境下安装与配置,以快速上手。1、服务端安装下载,Windows安装包下载地址:TestHubo-下载,下载安装包如tiklab-testhubo.x.x.x.exe。安装,
- Python丢包测试脚本(以串口为例)
无聊到发博客的菜鸟
python网络c语言单片机嵌入式
说明Python作为接收端,以指定格式接收数据,可以统计速率和丢包率等信息,效果如下:运行:9751秒|总接收:4889456640字节|速率:489.894KB/s|3.827Mbps|收到4774860包|丢了0包|当前包序11098121运行:9752秒|总接收:4889960448字节|速率:489.320KB/s|3.823Mbps|收到4775352包|丢了0包|当前包序1109861
- 深入了解京东商品详情API接口
数据捕手19970108018
爬虫技能晋升路线java前端python大数据
一、接口概述京东商品详情API接口是京东开放平台为开发者提供的用于获取京东平台上商品详细信息的通道。通过调用该接口,开发者能够获取到丰富的商品相关数据,以满足各种业务需求,例如在电商应用、价格比较工具、数据分析平台等场景中展示商品信息、进行数据统计分析等。从数据层面来看,该接口可返回的信息涵盖多个方面。商品基本信息包括商品名称、商品编号、所属品牌、商品分类等;价格信息有当前售价、历史价格走势、促销
- 23章11节:自助抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1microsoft信息可视化
在统计学中,数据分析的核心任务之一是如何在样本数据的基础上推断总体的性质。传统方法往往依赖于已知的概率分布假设和解析推导,但在现实问题中,我们往往无法准确得知总体分布,或者数据样本量较小,难以满足经典统计推断方法的要求。自助抽样作为一种非参数的计算方法,为我们提供了基于样本数据“自我重复”构建抽样分布的途径。1977年,斯坦福大学的B.Efron在著名论文《BootstrapMethods:Ano
- 使用 Math.NET 进行数值计算的指南
墨瑾轩
一起学学C#【一】.net决策树算法
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣使用Math.NET进行数值计算的指南️♂️数值计算的魅力:从基础到进阶引言在科学计算、工程设计甚至是金融分析等领域,数值计算都是不可或缺的一环。Math.NETNumerics作为.NET平台上的一款强大而全面的数值计算库,提供了包括线性代数、概率统计、信
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文