yolov3读取数据

yolov3数据预处理这块基本是一些比较常用的数据处理手段,将读取的图片数据转换为rgb并乘以1/255进行归一化,将图像大小通过缩放和pad的方式转换为宽高相等的图像,且转换后图像的大小为32的整数倍;为什么要转换为32的整数倍呢??? 因为网络设计最大的stride为32,如果不为32的整数倍,那么网络前向的过程中有可能会出现奇数倍的数据宽高,那么上采用后的图像再和前面的网络层进行特征融合就会出现维度不匹配的现象,所以这就是为什么要设置为32的整数倍。下面就是yolov3数据预处理的代码实现

import glob
import random
import os
import sys
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F

from utils.augmentations import horisontal_flip
from torch.utils.data import Dataset
import torchvision.transforms as transforms


#对图像进行pad,具体填充的值为pad_value
def pad_to_square(img, pad_value):
    c, h, w = img.shape
    dim_diff = np.abs(h - w)
    # (upper / left) padding and (lower / right) padding
    pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2
    # Determine padding
    pad = (0, 0, pad1, pad2) if h <= w else (pad1, pad2, 0, 0)
    # Add padding
    img = F.pad(img, pad, "constant", value=pad_value)

    return img, pad

#对图像进行缩放,采用最近邻进行插值
def resize(image, size):
    image = F.interpolate(image.unsqueeze(0), size=size, mode="nearest").squeeze(0)
    return image

#随机缩放
def random_resize(images, min_size=288, max_size=448):
    new_size = random.sample(list(range(min_size, max_size + 1, 32)), 1)[0]
    images = F.interpolate(images, size=new_size, mode="nearest")
    return images


class ImageFolder(Dataset):
    def __init__(self, folder_path, img_size=416):
        self.files = sorted(glob.glob("%s/*.*" % folder_path))
        self.img_size = img_size

    def __getitem__(self, index):
        img_path = self.files[index % len(self.files)]
        # Extract image as PyTorch tensor
        img = transforms.ToTensor()(Image.open(img_path))
        # Pad to square resolution
        img, _ = pad_to_square(img, 0)
        # Resize
        img = resize(img, self.img_size)

        return img_path, img

    def __len__(self):
        return len(self.files)


class ListDataset(Dataset):
    def __init__(self, list_path, img_size=416, augment=True, multiscale=True, normalized_labels=True):
        with open(list_path, "r") as file:
            self.img_files = file.readlines()

        self.label_files = [
            path.replace("images", "labels").replace(".png", ".txt").replace(".jpg", ".txt")
            for path in self.img_files
        ]
        self.img_size = img_size
        self.max_objects = 100
        self.augment = augment
        self.multiscale = multiscale
        self.normalized_labels = normalized_labels
        self.min_size = self.img_size - 3 * 32
        self.max_size = self.img_size + 3 * 32
        self.batch_count = 0

    def __getitem__(self, index):

        # ---------
        #  Image
        # ---------

        img_path = self.img_files[index % len(self.img_files)].rstrip()

        # Extract image as PyTorch tensor
        #将图像格式转换为rgb,并进行归一化
        img = transforms.ToTensor()(Image.open(img_path).convert('RGB'))

        # Handle images with less than three channels
        if len(img.shape) != 3:
            img = img.unsqueeze(0)
            img = img.expand((3, img.shape[1:]))

        _, h, w = img.shape
        h_factor, w_factor = (h, w) if self.normalized_labels else (1, 1)
        # Pad to square resolution
        img, pad = pad_to_square(img, 0)
        _, padded_h, padded_w = img.shape

        # ---------
        #  Label
        # ---------

        label_path = self.label_files[index % len(self.img_files)].rstrip()

        targets = None
        #调整pad后图像中目标物体对应的label
        if os.path.exists(label_path):
            boxes = torch.from_numpy(np.loadtxt(label_path).reshape(-1, 5))
            # Extract coordinates for unpadded + unscaled image
            x1 = w_factor * (boxes[:, 1] - boxes[:, 3] / 2)
            y1 = h_factor * (boxes[:, 2] - boxes[:, 4] / 2)
            x2 = w_factor * (boxes[:, 1] + boxes[:, 3] / 2)
            y2 = h_factor * (boxes[:, 2] + boxes[:, 4] / 2)
            # Adjust for added padding
            x1 += pad[0]
            y1 += pad[2]
            x2 += pad[1]
            y2 += pad[3]
            # Returns (x, y, w, h)
            boxes[:, 1] = ((x1 + x2) / 2) / padded_w
            boxes[:, 2] = ((y1 + y2) / 2) / padded_h
            boxes[:, 3] *= w_factor / padded_w
            boxes[:, 4] *= h_factor / padded_h

            targets = torch.zeros((len(boxes), 6))
            targets[:, 1:] = boxes

        # Apply augmentations
        if self.augment:
            if np.random.random() < 0.5:
                img, targets = horisontal_flip(img, targets)

        return img_path, img, targets

    def collate_fn(self, batch):
        paths, imgs, targets = list(zip(*batch))
        # Remove empty placeholder targets
        targets = [boxes for boxes in targets if boxes is not None]
        # Add sample index to targets
        for i, boxes in enumerate(targets):
            boxes[:, 0] = i
        targets = torch.cat(targets, 0)
        # Selects new image size every tenth batch
        if self.multiscale and self.batch_count % 10 == 0:
            self.img_size = random.choice(range(self.min_size, self.max_size + 1, 32))
        # Resize images to input shape
        imgs = torch.stack([resize(img, self.img_size) for img in imgs])
        self.batch_count += 1
        return paths, imgs, targets

    def __len__(self):
        return len(self.img_files)

实现过程相比v4也比较简单,水平有限,若有不当之处请指教,谢谢!

你可能感兴趣的:(yolo-list,CV,pytorch,深度学习,神经网络,机器学习)