input子系统

转载: http://blog.csdn.net/fanqipin/article/details/8019512

 

一.input子系统简介:

        linux系统中,input输入子系统驱动主要可以分为:设备驱动层、input core层和input handler事件处理层。设备驱动层为具体用户设备驱动,输入设备由struct input-dev 结构表示,并由input_register_device和input_unregister_device来注册和卸载;input hander事件处理层主要和用户空间交互,接收用户空间下发的file operation操作命令,生成/dev/input/xx设备节点供用户空间进行file operations操作; input core层负责管理系统中的input dev设备 和input hander事件处理,并起到承上启下作用,负责输入设备和input handler之间信息传输,输入子系统结构方框图如图1所示。

 input子系统

二.重要数据结构及函数接口:

      1.数据结构

   输入设备信息,匹配input hander时主要用下面参数

struct input_id {

__u16 bustype;                   总线类型

__u16 vendor;                       产家编号

__u16 product;                     产品编号

__u16 version;                        版本信息

};

用于表示输入设备数据结构:

struct input_dev{

const char *name;    设备名
const char *phys;      设备在系统中路径
const char *uniq;
struct input_id id;         用于匹配input hander参数

unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)];               

unsigned long evbit[BITS_TO_LONGS(EV_CNT)];                        设备所支持事件类型,主要有EV_SYNC,EV_KEY,EV_REL,EV_ABS等       

unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];                     按键所对应的位图

unsigned long relbit[BITS_TO_LONGS(REL_CNT)];                       相对坐标对应位图

unsigned long absbit[BITS_TO_LONGS(ABS_CNT)];                       绝对坐标对应位图

unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)];

unsigned long ledbit[BITS_TO_LONGS(LED_CNT)];

unsigned long sndbit[BITS_TO_LONGS(SND_CNT)];

unsigned long ffbit[BITS_TO_LONGS(FF_CNT)];

unsigned long swbit[BITS_TO_LONGS(SW_CNT)];

unsigned int hint_events_per_packet;

unsigned int keycodemax;

unsigned int keycodesize;

void *keycode;

int (*setkeycode)(struct input_dev *dev,  const struct input_keymap_entry *ke,  unsigned int *old_keycode);

int (*getkeycode)(struct input_dev *dev, struct input_keymap_entry *ke);

struct ff_device *ff;

unsigned int repeat_key;

struct timer_list timer;

int rep[REP_CNT];

struct input_mt_slot *mt;

int mtsize;

int slot;

int trkid;

struct input_absinfo *absinfo;

unsigned long key[BITS_TO_LONGS(KEY_CNT)];                                 按键对应的键值

unsigned long led[BITS_TO_LONGS(LED_CNT)];                                  LED对应的指示灯状态

unsigned long snd[BITS_TO_LONGS(SND_CNT)];

unsigned long sw[BITS_TO_LONGS(SW_CNT)];

int (*open)(struct input_dev *dev);                                         

void (*close)(struct input_dev *dev);

int (*flush)(struct input_dev *dev, struct file *file);

int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value);                  事件处理函数,主要是接收用户下发的命令,如点亮led;

struct input_handle __rcu *grab;

spinlock_t event_lock;

struct mutex mutex;

unsigned int users;

bool going_away;

bool sync;

struct device dev;

struct list_headh_list;                    设备所支持的input handle; 

struct list_headnode;

};

      用于 输入设备事件处理 的数据结构:

struct input_handler {

void *private;                            

void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value);

bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value);

bool (*match)(struct input_handler *handler, struct input_dev *dev);

int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id);   当输入设备和input handler相匹配时调用该函数;

void (*disconnect)(struct input_handle *handle);                

void (*start)(struct input_handle *handle);

const struct file_operations *fops;       所支持的file operation操作;

int minor;

const char *name;

const struct input_device_id *id_table;                 所有能够支持的输入设备;

struct list_headh_list;                                           

struct list_headnode;

};

连接input-dev 和input handler的数据结构:

struct input_handle {

void *private;         

int open;              

const char *name;                

struct input_dev *dev;                             input dev

struct input_handler *handler;               input handler

struct list_headd_node;                        

struct list_headh_node;

};

 

三. 设备驱动示例usbmouse

static struct usb_device_id usb_mouse_id_table [] = {

{ USB_INTERFACE_INFO(USB_INTERFACE_CLASS_HID, USB_INTERFACE_SUBCLASS_BOOT,

USB_INTERFACE_PROTOCOL_MOUSE) },

{ }  /* Terminating entry */

};

MODULE_DEVICE_TABLE (usb, usb_mouse_id_table);

通过USB_INTERFACE_INFO定定义一类USB device,usb device 和usb driver通过USB_DEVICE_ID_MATCH_INT_CLASS, USB_DEVICE_ID_MATCH_INT_SUBCLASS三个方面来进行匹配;

static struct usb_driver usb_mouse_driver = {

.name  = "usbmouse",

.probe  = usb_mouse_probe,

.disconnect=  usb_mouse_disconnect,

.id_table  = usb_mouse_id_table,                                                    

};

static int __init usb_mouse_init(void)
{

int retval = usb_register(&usb_mouse_driver);

if (retval == 0)

printk(KERN_INFO KBUILD_MODNAME ": " DRIVER_VERSION ":"DRIVER_DESC "\n");

return retval;

}
static void __exit usb_mouse_exit(void)
{

usb_deregister(&usb_mouse_driver);

}

         USB MOUSE通过usb_register和usb_unregister注册驱动到系统,当usb hub检测到USB MOUSE设备时,通过usb_mouse_driver中定义的id_table来进行驱动匹配;

匹配成功后,调用usb_mouse_driver中的usb_mouse_probe;

static int usb_mouse_probe(struct usb_interface *intf, const struct usb_device_id *id)
{

struct usb_device *dev = interface_to_usbdev(intf);

struct usb_host_interface *interface;

struct usb_endpoint_descriptor *endpoint;

struct usb_mouse *mouse;

struct input_dev *input_dev;

int pipe, maxp;

int error = -ENOMEM;

 

interface = intf->cur_altsetting;                                                获取当前USB配置;

if (interface->desc.bNumEndpoints != 1)      判断usb mouse endpoint个数,usb mouse 一般只有一个interrupt endpoint ;

return -ENODEV;

endpoint = &interface->endpoint[0].desc;

if (!usb_endpoint_is_int_in(endpoint))                               判断endpoint是否为中断类型;

return -ENODEV;

pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);     创建中断接收类型的pipe,usb  控制器和usb device之间通过pipe来进行传输;

maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));                      获取endpoint 收发数据大小;

mouse = kzalloc(sizeof(struct usb_mouse), GFP_KERNEL);           为usbmouse申请内存空间;

input_dev = input_allocate_device();                                     申请input-dev空间,并进行初始化;

if (!mouse || !input_dev)

goto fail1;

申请用于存放从usb mouse获取得到数据的存储空间,如果USB 主控制器支持DMA方式,则通过变量data_dma来返回用于DMA方式获取数据的内存地址;

mouse->data = usb_alloc_coherent(dev, 8, GFP_ATOMIC, &mouse->data_dma);         

if (!mouse->data)                                                                   

goto fail1;

mouse->irq = usb_alloc_urb(0, GFP_KERNEL);                            申请int urb 空间;

if (!mouse->irq)

goto fail2;

mouse->usbdev = dev;

mouse->dev = input_dev;

       /*设备设备名字及设备路径;*/

if (dev->manufacturer)

strlcpy(mouse->name, dev->manufacturer, sizeof(mouse->name));

if (dev->product) {

if (dev->manufacturer)

strlcat(mouse->name, " ", sizeof(mouse->name));

strlcat(mouse->name, dev->product, sizeof(mouse->name));

}

if (!strlen(mouse->name))

snprintf(mouse->name, sizeof(mouse->name), "USB HIDBP Mouse %04x:%04x", le16_to_cpu(dev->descriptor.idVendor),le16_to_cpu(dev->descriptor.idProduct));

usb_make_path(dev, mouse->phys, sizeof(mouse->phys));

strlcat(mouse->phys, "/input0", sizeof(mouse->phys));

        input_dev->name = mouse->name;

input_dev->phys = mouse->phys;

设置用于匹配input hander的参数信息,这里主要有bustype,vendor,product,version,注意,在usb中数据用大端方式存放,所以要先进行转换;

usb_to_input_id(dev, &input_dev->id);                  

input_dev->dev.parent = &intf->dev;

input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL);                设置input-dev所支持事件类型,这里usb mouse支持按键和相对坐标事件;

input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) | BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE) ;      设置EV_KEY对应按键位图;

input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y);                         设置EV_REL相应位图;

input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) |  BIT_MASK(BTN_EXTRA);              

input_dev->relbit[0] |= BIT_MASK(REL_WHEEL);

input_set_drvdata(input_dev, mouse);

input_dev->open = usb_mouse_open;

input_dev->close = usb_mouse_close;

         /*填充int urb基本数据;*/

usb_fill_int_urb(mouse->irq, dev, pipe, mouse->data,  (maxp > 8 ? 8 : maxp) ,  usb_mouse_irq, mouse, endpoint->bInterval);

mouse->irq->transfer_dma = mouse->data_dma;           

mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;          设置该标志可以防止主控制器再次申请dma空间;                   

error = input_register_device(mouse->dev);                注册input-dev设备

if (error)

goto fail3;

usb_set_intfdata(intf, mouse);

return 0;

fail3:

usb_free_urb(mouse->irq);

fail2:

usb_free_coherent(dev, 8, mouse->data, mouse->data_dma);

fail1:

input_free_device(input_dev);

kfree(mouse);

return error;

}

input-dev通过input_register_device注册到input core中,并通过input_id来匹配input handler,如果匹配成功,则会调用usb_mouse_open函数;

static int usb_mouse_open(struct input_dev *dev)
{

struct usb_mouse *mouse = input_get_drvdata(dev);

 

mouse->irq->dev = mouse->usbdev;

if (usb_submit_urb(mouse->irq, GFP_KERNEL))

return -EIO;

return 0;

}

usb_mouse_open函数主要用于提交usb interrupt urb到usb core中;当urb提交完成后不管usb core层有没有发送成功,都会调用回调函数usb_mouse_irq;

驱动中可以通过urb中的status来判断当前urb是否成功处理;

  static void usb_mouse_irq(struct urb *urb)
{

struct usb_mouse *mouse = urb->context;

signed char *data = mouse->data;

struct input_dev *dev = mouse->dev;

int status;

 

switch (urb->status) {                                                       通过status来判断urb处理是否成功;

case 0:  /* success */

break;

case -ECONNRESET:/* unlink */

case -ENOENT:

case -ESHUTDOWN:

return;

/* -EPIPE:  should clear the halt */

default:  /* error */

goto resubmit;

}

 

input_report_key(dev, BTN_LEFT,   data[0] & 0x01);              报告按键值;

input_report_key(dev, BTN_RIGHT,  data[0] & 0x02);

input_report_key(dev, BTN_MIDDLE, data[0] & 0x04);

input_report_key(dev, BTN_SIDE,   data[0] & 0x08);

input_report_key(dev, BTN_EXTRA,  data[0] & 0x10);

 

input_report_rel(dev, REL_X,     data[1]);                              报告相对坐标信息;

input_report_rel(dev, REL_Y,     data[2]);

input_report_rel(dev, REL_WHEEL, data[3]);

 

input_sync(dev);                                                 输入信息同步,表示报告事件结束;

resubmit:

status = usb_submit_urb (urb, GFP_ATOMIC);            重新提交urb,这样系统就可以不断获取usb mouse信息;

}

在usb_mouse_irq中,通过input_report_key和input_report_rel来上报对应按键信息和坐标信息;并通过 input_sync来结束一次完整事件报告;最后通过usb_submit_urb来重复提交urb,可以使系统不断得到usb mouse信息;

四 总结

       从上面示例中可以得出写一个input-dev驱动主要要做事情;

1. 为input-dev申请空间;

2. 设置input-dev的名字及设备路径;

3.设置input-dev的id_table成员,及dev parent; 

4. 实现input-dev结构中的open,close,event(有些设备不需要)函数接口;

5.设置input-dev支持的事件类型,及各类型事件code对应的位图;

6.通过input_register_device注册input-dev设备;

7. 通过input_report_key,input_report_rel等函数接口上报相应事件;

8.最后通过input_sync来结束一次完整上报事件;

 

你可能感兴趣的:(input)