Largest Rectangle in Histogram leetcode java

题目

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.


Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].


The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,
Given height = [2,1,5,6,2,3],
return 10.

 

题解:

        这道题自己是完全没想到用栈了。。

        有个很完整很详细很好的讲解在这里: http://www.cnblogs.com/lichen782/p/leetcode_Largest_Rectangle_in_Histogram.html

        我就不写了。贴一下上面提到的代码吧。

        O(n^2)的:

 1  public  int largestRectangleArea( int[] height) {
 2          //  Start typing your Java solution below
 3           //  DO NOT write main() function
 4           int[] min =  new  int[height.length];
 5          int maxArea = 0;
 6          for( int i = 0; i < height.length; i++){
 7              if(height[i] != 0 && maxArea/height[i] >= (height.length - i)) {
 8                  continue;
 9             }
10              for( int j = i; j < height.length; j++){
11                  if(i == j) min[j] = height[j];
12                  else {
13                      if(height[j] < min[j - 1]) {
14                         min[j] = height[j];
15                     } else min[j] = min[j-1];
16                 }
17                  int tentativeArea = min[j] * (j - i + 1);
18                  if(tentativeArea > maxArea) {
19                     maxArea = tentativeArea;
20                 }
21             }
22         }
23          return maxArea;
24     }

 

        O(n)的:

 1  public  int largestRectangleArea2( int[] height) {
 2         Stack<Integer> stack =  new Stack<Integer>();
 3          int i = 0;
 4          int maxArea = 0;
 5          int[] h =  new  int[height.length + 1];
 6         h = Arrays.copyOf(height, height.length + 1);
 7          while(i < h.length){
 8              if(stack.isEmpty() || h[stack.peek()] <= h[i]){
 9                 stack.push(i++);
10             } else {
11                  int t = stack.pop();
12                 maxArea = Math.max(maxArea, h[t] * (stack.isEmpty() ? i : i - stack.peek() - 1));
13             }
14         }
15          return maxArea;
16     }

 

你可能感兴趣的:(LeetCode)