如果已知旋转前后的一向量的变化,那么该如何求这个旋转矩阵呢?本篇结合Rodrigues' rotation formula,介绍一下该旋转矩阵的求法。
已知旋转前向量为P, 旋转后变为Q。由点积定义可知:
由1中可知,旋转角所在的平面为有P和Q所构成的平面,那么旋转轴必垂直该平面。
假定旋转前向量为a(a1, a2, a3), 旋转后向量为b(b1, b2, b3)。由叉乘定义得:
所以旋转轴c(c1, c2, c3)为:
已知单位向量 , 将它旋转θ角。由罗德里格旋转公式,可知对应的旋转矩阵 :
其中I是3x3的单位矩阵,
是叉乘中的反对称矩阵r:
假设在坐标系(x, y, z)中,向量v=ax+by+cz,v绕z轴逆时针旋转θ角后得到新的向量v’。
根据2维(x,y)面上的旋转公式可得:
推出:
将上式中的叉乘表示为反对称矩阵得:
另外:
最终可以推出:
上式即为罗德里格旋转公式。
根据旋转前后的两个向量值,使用上面的方法,先求出旋转角度和旋转轴,然后用罗德里格旋转公式即可求出对应的旋转矩阵。
C#的实现代码如下:
void Calculation(double[] vectorBefore, double[] vectorAfter) { double[] rotationAxis; double rotationAngle; double[,] rotationMatrix; rotationAxis = CrossProduct(vectorBefore, vectorAfter); rotationAngle = Math.Acos(DotProduct(vectorBefore, vectorAfter) / Normalize(vectorBefore) / Normalize(vectorAfter)); rotationMatrix = RotationMatrix(rotationAngle, rotationAxis); } double[] CrossProduct(double[] a, double[] b) { double[] c = new double[3]; c[0] = a[1] * b[2] - a[2] * b[1]; c[1] = a[2] * b[0] - a[0] * b[2]; c[2] = a[0] * b[1] - a[1] * b[0]; return c; } double DotProduct(double[] a, double[] b) { double result; result = a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; return result; } double Normalize(double[] v) { double result; result = Math.Sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); return result; } double[,] RotationMatrix(double angle, double[] u) { double norm = Normalize(u); double[,] rotatinMatrix = new double[3,3]; u[0] = u[0] / norm; u[1] = u[1] / norm; u[2] = u[2] / norm; rotatinMatrix[0, 0] = Math.Cos(angle) + u[0] * u[0] * (1 - Math.Cos(angle)); rotatinMatrix[0, 0] = u[0] * u[1] * (1 - Math.Cos(angle) - u[2] * Math.Sin(angle)); rotatinMatrix[0, 0] = u[1] * Math.Sin(angle) + u[0] * u[2] * (1 - Math.Cos(angle)); rotatinMatrix[0, 0] = u[2] * Math.Sin(angle) + u[0] * u[1] * (1 - Math.Cos(angle)); rotatinMatrix[0, 0] = Math.Cos(angle) + u[1] * u[1] * (1 - Math.Cos(angle)); rotatinMatrix[0, 0] = -u[0] * Math.Sin(angle) + u[1] * u[2] * (1 - Math.Cos(angle)); rotatinMatrix[0, 0] = -u[1] * Math.Sin(angle) + u[0] * u[2] * (1 - Math.Cos(angle)); rotatinMatrix[0, 0] = u[0] * Math.Sin(angle) + u[1] * u[2] * (1 - Math.Cos(angle)); rotatinMatrix[0, 0] = Math.Cos(angle) + u[2] * u[2] * (1 - Math.Cos(angle)); return rotatinMatrix; }