Table of Contents 目录
Preface
1. Language Processing and Python
1.1 Computing with Language: Texts and Words
1.2 A Closer Look at Python: Texts as Lists of Words
1.3 Computing with Language: Simple Statistics
1.4 Back to Python: Making Decisions and Taking Control
1.5 Automatic Natural Language Understanding
1.6 Summary
1.7 Further Reading
1.8 Exercises
2. Accessing Text Corpora and Lexical Resources
2.1 Accessing Text Corpora
2.2 Conditional Frequency Distributions
2.3 More Python: Reusing Code
2.4 Lexical Resources
2.5 WordNet
2.6 Summary
小结
2.7 Further Reading深入阅读
2.8 Exercises练习
3. Processing Raw Text
处理原始文本
3.1 Accessing Text from the Web and from Disk从Web和磁盘获得文本
3.2 Strings: Text Processing at the Lowest Level字符串:最底层的文本处理
3.3 Text Processing with Unicode使用Unicode处理文本
3.4 Regular Expressions for Detecting Word Patterns使用正则表达式检测词组
3.5 Useful Applications of Regular Expressions正则表示式的有益应用
3.6 Normalizing Text规格化文本
3.7 Regular Expressions for Tokenizing Text正则表达式用于本文分词
3.8 Segmentation分割
3.9 Formatting: From Lists to Strings格式设定:从列表到字符串
3.10 Summary小结
3.11 Further Reading深入阅读
3.12 Exercises练习
4. Writing Structured Programs编写结构化程序
4.1 Back to the Basics回到基础
4.2 Sequences序列
4.3 Questions of Style关于风格
4.4 Functions: The Foundation of Structured Programming函数:结构化编程的基础
4.5 Doing More with Functions关于函数的更多使用
4.6 Program Development程序开发
4.7 Algorithm Design算法设计
4.8 A Sample of Python LibrariesPython库的样本
4.9 Summary小结
4.10 Further Reading深入阅读
4.11 Exercises练习
5. Categorizing and Tagging Words分类和标注单词
5.1 Using a Tagger使用标注器
5.2 Tagged Corpora标记语料库
5.3 Mapping Words to Properties Using Python Dictionaries使用Python字典把单词映射到属性
5.4 Automatic Tagging自动标注
5.5 N-Gram TaggingN-Gram标注
5.6 Transformation-Based Tagging基于转换的标注
5.7 How to Determine the Category of a Word如何决定一个词的类别
5.8 Summary小结
5.9 Further Reading深入阅读
5.10 Exercises练习
6. Learning to Classify Text学习本文分类
6.1 Supervised Classification监督式分类
6.2 Further Examples of Supervised Classification6.3 Evaluation
评分
6.4 Decision Trees决策树
6.5 Naive Bayes Classifiers朴素贝叶斯分类器
6.6 Maximum Entropy Classifiers最大熵分类器
6.7 Modeling Linguistic Patterns建模语言模式
6.8 Summary小结
6.9 Further Reading深入阅读
6.10 Exercises练习
7. Extracting Information from Text从文本提取信息
7.1 Information Extraction7.2 Chunking
分块
7.3 Developing and Evaluating Chunkers分块器开发和求值
7.4 Recursion in Linguistic Structure语言结构中的递归
7.5 Named Entity Recognition命名实体识别
7.6 Relation Extraction关系提取
7.7 Summary小结
7.8 Further Reading深入阅读
7.9 Exercises练习
8. Analyzing Sentence Structure句子结构分析
8.1 Some Grammatical Dilemmas一些语法困惑
8.2 What’s the Use of Syntax?语法有什么用处?
8.3 Context-Free Grammar上下文无关语法
8.4 Parsing with Context-Free Grammar使用上下文无关语法进行解析
8.5 Dependencies and Dependency Grammar相关性和相关性语法
8.6 Grammar Development语法的发展
8.7 Summary小结
8.8 Further Reading深入阅读
8.9 Exercises练习
9. Building Feature-Based Grammars构建基于特征的语法
9.1 Grammatical Features语法特征
9.2 Processing Feature Structures处理特征结构
9.3 Extending a Feature-Based Grammar
扩展基于特征的语法
9.4 Summary小结
9.5 Further Reading深入扩展
9.6 Exercises练习
10. Analyzing the Meaning of Sentences分析句子的意义
10.1 Natural Language Understanding自然语言的理解
10.2 Propositional Logic命题逻辑
10.3 First-Order Logic一阶逻辑
10.4 The Semantics of English Sentences英文句子的语义
10.5 Discourse Semantics语段语义
10.6 Summary小结
10.7 Further Reading深入阅读
10.8 Exercises练习
11. Managing Linguistic Data语料管理
11.1 Corpus Structure: A Case Study语料库结构:案例研究
11.2 The Life Cycle of a Corpus语料库的生命周期
11.3 Acquiring Data获取数据
11.4 Working with XML处理XML
11.5 Working with Toolbox Data
处理Toolbox Data
11.6 Describing Language Resources Using OLAC Metadata使用OLAC元数据描述语言资源
11.7 Summary小结
11.8 Further Reading深入阅读
11.9 Exercises练习
Afterword: The Language Challenge后记:语言的挑战
Bibliography参考文献
NLTK IndexNLTK索引
General Index一般索引
知识共享署名、非商业性使用、禁止演绎创作许可证3.0
以上章节内容均来自 Natural Language Processing with Python , 由Steven Bird , Ewan Klein 和Edward Loper 共同的辛勤劳动,Copyright © 2009,本内容并随NLTK共同发布,网址: http://www.nltk.org/ 。文章和相关资料遵循 Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 创作许可证。