- Python从0到100(六十八):Python OpenCV-图像边缘检测及图像融合
是Dream呀
opencvpython计算机视觉
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- LSTM:解决梯度消失问题
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在深度学习领域,循环神经网络(RNN)是一种处理序列数据的强大工具。然而,RNN在处理长序列时面临着梯度消失的问题。为了解决这个问题,Hochreiter和Schmidhuber于1997年提出了长短期记忆(LSTM)网络。本文将深入探讨LSTM如何解决梯度消失问题。2.核心概念与联系2.1梯度消失问题在深度神经网络中,梯度消失是一个常见的问题。当网络的层数增加时,反向传播的梯度会随着
- 基于深度学习的SSD口罩识别项目完整资料版(视频教程+课件+源码+数据)
AI方案2025
深度学习人工智能
基于深度学习的SSD口罩识别项目完整资料版,包含视频教程、PPT课件和源码.01项目介绍.mp402SSD算法原理回顾.mp403数据集收集.mp404自定义数据集.mp405生成anchors.mp406展示anchors.mp407计算iou值.mp408计算target.mp409定义模型.mp410模型训练.mp411预测和总结.mp412ssd生成anchor源码编写.mp413计算of
- 55、深度学习-自学之路-自己搭建深度学习框架-16、使用LSTM解决RNN梯度消失和梯度爆炸的问题,重写莎士比亚风格文章。
小宇爱
深度学习-自学之路深度学习rnn人工智能自然语言处理神经网络
importnumpyasnpclassTensor(object):def__init__(self,data,autograd=False,creators=None,creation_op=None,id=None):self.data=np.array(data)self.autograd=autogradself.grad=Noneif(idisNone):self.id=np.rand
- 解锁机器学习核心算法 | K -近邻算法:机器学习的神奇钥匙
紫雾凌寒
AI炼金厂#机器学习算法算法机器学习近邻算法KNNk-近邻算法pythonscikit-learn
一、引言今天我们继续学习机器学习核心算法——K-近邻(K-NearestNeighbors,简称KNN)算法。它就像是一位经验丰富的“老江湖”,以其简单而又强大的方式,在众多机器学习任务中占据着不可或缺的地位。K-近邻算法,作为机器学习中的一种基本分类与回归方法,以其独特的“基于邻居投票”策略而闻名。它的核心思想简单易懂,就如同我们在生活中判断一个人可能的兴趣爱好时,会参考他身边最常接触的朋友们的
- 解决tensorflow-addons下载问题Could not find a version that satisfies the requirement
猪猪家的小可爱
AIpython机器学习机器学习人工智能算法
由于要用到tensorflow-addons,所以需要安装对应的库。遇到的问题是:ERROR:Couldnotfindaversionthatsatisfiestherequirementtensorflow-addons(fromversions:none)ERROR:Nomatchingdistributionfoundfortensorflow-addons网上有很多说是pip源的原因,所以
- 支持向量机(Support Vector Machine,SVM)详细解释(带示例)
浪九天
人工智能理论支持向量机算法机器学习
目录基本概念线性可分情况线性不可分情况工作原理示例Python案例代码解释基本概念支持向量机是一种有监督的机器学习算法,可用于分类和回归任务。在分类问题中,SVM的目标是找到一个最优的超平面,将不同类别的样本分隔开来,并且使得两类样本到该超平面的间隔最大。这个超平面被称为最大间隔超平面,而那些离超平面最近的样本点被称为支持向量,它们决定了超平面的位置和方向。线性可分情况当数据是线性可分的,即存在一
- 中国信通院“护证计划”正式启动,合合信息入选首批技术支撑单位
大模型人工智能算法
随着人工智能技术的飞速发展,AI照“骗”在各个行业泛滥成灾,数字图像的真实性面临前所未有的挑战。近日,由中国互联网协会中小企业发展工委会主办的“卓信大数据计划”2025年度会议在京召开。本次会议上,中国信通院、中国互联网协会、中国图象图形学学会以及合合信息、蚂蚁安全实验室等多家企业代表共同启动了以AI守护AI,面向可信证照的专项行动“护证计划”,合合信息成功入选“护证计划”首批技术支撑单位。图说:
- 【Stable Diffusion】AnimatedDiff--AI动画 插件使用技巧分享;文生视频、图生视频、AI生成视频工具;
乘凉~
人工智能应用stablediffusion人工智能音视频
本专栏主要记录人工智能的应用方面的内容,包括chatGPT、DeepSeek、AI绘画等等;在当今AI的热潮下,不学习AI,就要被AI淘汰;所以欢迎小伙伴加入本专栏和我一起探索AI的应用,通过AI来帮助自己提升生产力;本文的目标就是让每一个读者,都能学会并掌握AnimateDiff的使用;成功用它来生成你想要的视频。AnimateDiff是StableDiffusion的一个插件,借助它,你可以实
- 清华大学《DeepSeek与AI幻觉》(无套路免费分享)
xiecoding.cn
人工智能deepseekdeepseek教程deepseek与AI幻觉deepseek清华教程
随着人工智能技术的飞速发展,以DeepSeek为代表的国产大模型正逐渐成为各行各业的重要工具。然而,AI在生成内容时常常会出现“幻觉”——即生成与事实不符、逻辑断裂或脱离上下文的内容。清华大学新闻与传播学院与人工智能学院联合推出的这篇教程《DeepSeek与AI幻觉》,系统性地讲解了AI幻觉的成因、评测方法及应对策略,旨在帮助用户更好地理解和使用AI工具。《DeepSeek与AI幻觉》:https
- 基于Python实现的【机器学习】小项目教程案例
xinxiyinhe
人工智能githubpython机器学习
以下是一个基于Python实现的【机器学习】小项目教程案例,结合的经典案例与最佳实践,涵盖数据预处理、模型训练与评估全流程,并附详细代码说明与结果分析:案例1:鸢尾花分类(SVM算法)数据集:IrisDataset(含150个样本,4个特征,3个类别)目标:根据花瓣与萼片长度预测鸢尾花种类步骤:环境准备:安装scikit-learn、pandas、matplotlibpipinstallsciki
- 中值滤波结合快速排序算法优化传感器数据预处理
Gui林
排序算法算法
一、算法核心逻辑目标:在嵌入式系统中,通过快速排序的“部分排序”特性,优化中值滤波的计算效率。适用场景:实时传感器数据处理(如红外、超声波、加速度计等),窗口大小N=5(可根据需求调整)。优势:时间复杂度从O(N²)(冒泡排序)优化至O(N)(快速排序部分排序)。内存占用低,适合资源受限的嵌入式设备(如STM32)。二、完整代码与注释#include//定义滑动窗口大小(N=5)#defineWI
- 上海第二批49家创新型企业总部名单出炉,合合信息入选
人工智能算法大数据大模型
创新型企业是上海现代化产业体系的重要组成部分,是上海高质量发展的活力所在。近期,上海为新认定的第二批49家创新型企业总部进行授牌,着力为创新型企业在沪发展壮大营造良好环境。此次获授牌的企业总部涵盖集成电路、生物医药、人工智能、数字经济、战新综合等重点产业领域,上海合合信息科技股份有限公司(股票代码:688615.SH)成功入选第二批49家创新型企业总部名单,系人工智能领域获奖企业之一。图说:上海市
- 深入详解人工智能机器学习:强化学习
猿享天开
人工智能基础知识学习人工智能机器学习强化学习
目录强化学习概述强化学习的基本概念定义关键组件强化学习过程常用算法应用示例示例代码代码解释应用场景强化学习核心概念和底层原理核心概念底层原理总结强化学习概述强化学习(ReinforcementLearning,RL)是机器学习中的一个重要领域,其核心目标是通过与环境的交互学习如何采取行动以最大化累积奖励。与监督学习不同的是,强化学习不依赖于给定的输入输出对,而是通过试探和反馈不断改进决策策略。强化
- JS宏案例:在wps编辑器中玩numpy
jackispy
JS宏实例numpy数据分析javascript
NumPy是Python中用于科学计算的一个基础库,它提供了大量的数学函数工具,尤其是用于高效处理大型多维数组和矩阵。NumPy是Python数据分析、机器学习、科学计算等领域中不可或缺的一部分。然,在wps的js宏编辑器中,并没有这样一个模块或是全局对象,但是,问题不大,我们可以手搓一个。不过,要使用JS完全模拟python中的numpy是比较困难的,工作量也非常的大,我们可以适当简化一下,如只
- 2025年,值得关注的LLM大趋势
AI小白熊
人工智能产品经理python开发语言学习ai大模型
随着人工智能技术不断进步,大语言模型正在改变各行各业的运作方式。从代码生成到语言学习应用,GenAI已经渗透到我们日常生活的方方面面。随着像上个月OpenAI的“12天”计划或谷歌的Veo2和Imagen3等新技术的发布,我们看到了快速的创新迭代。面对这些变化,2025年LLM的大趋势值得我们关注。LLM的新兴应用:不仅仅是聊天机器人回想起最初我们用ChatGPT来生成代码或修改文本时,可能没有意
- 机器学习:强化学习的epsilon贪心算法
田乐蒙
PythonML机器学习贪心算法人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,旨在通过与环境交互,使智能体(Agent)学习如何采取最优行动,以最大化某种累积奖励。它与监督学习和无监督学习不同,强调试错探索(Exploration-Exploitation)以及基于奖励信号的学习。强化学习任务通常用马尔可夫决策过程来描述:机器处于环境EEE中,状态空间XXX,其中每个状态x∈Xx\inXx∈X是
- 构建智慧校园:推动教育现代化的重要路径
智慧校园-合肥自友科技
智慧校园数字化校园智慧校园平台智慧校园智慧校园系统智慧校园平台智慧校园建设智慧校园软件智慧校园方案智慧校园厂商
随着信息技术的飞速发展,智慧校园作为教育领域的新趋势,正逐渐成为推动教育现代化的重要力量。智慧校园不仅是一种物理空间的升级,更是一种教育理念和实践方式的革新。它强调利用大数据、人工智能、物联网等前沿技术,实现教学过程的智能化、个性化与高效化。智慧校园的核心在于智能硬件设施的广泛部署,如智能教室、电子白板、智能图书馆等,这些设备不仅能够提供更为便捷、高效的教与学环境,还能够收集并分析大量数据,为优化
- 自然语言处理入门:从基础概念到实战项目
范范0825
自然语言处理人工智能
自然语言处理入门:从基础概念到实战项目一、引言自然语言处理(NaturalLanguageProcessing,简称NLP)是人工智能的重要分支,旨在让计算机能够理解、生成和处理人类语言。随着大数据和深度学习的发展,NLP技术在文本分类、机器翻译、问答系统、情感分析等领域得到了广泛应用。本文将从NLP的基础概念入手,逐步介绍关键技术,最终通过一个完整的实战项目帮助读者掌握如何在实际应用中使用NLP
- 基于STM32设计的智能窗户控制系统(华为云IOT)(196)
DS小龙哥
智能家居与物联网项目实战stm32华为云物联网智能窗户智能窗帘
文章目录一、设计需求1.1设计需求总结1.2整体设计思路1.3整体构架1.4功能总结1.5ESP8266模块配置1.6上位机开发思路1.7项目的意义1.8供电方式1.9参考文献1.10整体框架1.11设备原理图二、硬件选型2.1ESP8266-串口WIFI2.2STM32开发板2.3USB下载线2.4洞洞板2.5雨滴传感器2.6震动模块2.7杜邦线(2排)2.8OLED显示屏2.95V步进电机2.
- Python深度学习实践:使用TensorFlow构建图像分类器
Evaporator Core
Python开发经验python深度学习tensorflow
摘要随着深度学习技术的飞速发展,图像识别已成为AI领域的热点应用之一。本篇文章将引导读者使用Python和Google的TensorFlow框架,从零开始构建一个简单的图像分类器。我们将深入探讨卷积神经网络(CNN)的基本原理,实现一个能够识别MNIST手写数字的数据集模型,并通过实战代码演示整个过程,最终展示模型的训练与评估。一、环境配置与库导入确保已安装Python3.7+版本,以及Tenso
- 物联网在智慧医院中的应用与规划
罗思付之技术屋
综合技术探讨及方案专栏物联网
摘要随着信息技术的快速发展,物联网技术在医院中的应用已经成为医疗领域的重要研究方向。基于医院物联网应用要求,提出一个符合智慧医院建设要求的物联网规划方法和技术架构,并提出了未来医院物联网的规划建议。引言随着医疗信息化的推进,医院物联网作为解决医疗领域问题的有效手段,受到了广泛的关注。医院物联网通过将传感器、设备和信息系统连接起来,实现对医疗建筑环境、医疗设备和医疗服务过程的实时监测和管理,提高医疗
- 深度学习进阶:构建多层神经网络
孤寂大仙v
深度学习神经网络人工智能
在上一篇文章中,我们从零开始构建了一个简单的两层神经网络,并通过异或问题(XOR)展示了神经网络的强大能力。今天,我们将进一步深入,构建一个更复杂的多层神经网络,并引入更多高级概念,如多隐藏层、激活函数选择、正则化等。我们还会使用更复杂的分类任务来训练模型,并评估其性能。1.多层神经网络的结构在实际应用中,深度学习模型通常包含多个隐藏层,这种结构被称为深度神经网络(DNN)。多层神经网络能够学习更
- 无法启动此程序,因为计算机丢失api-ms-win-core-path-l1-1-0.dll的解决方案
爱编程的喵喵
Python基础课程pythonwindows7api-ms-win-core解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了无法启动此程序,因为计算机丢失api
- Elasticsearch:使用阿里云 AI 服务进行向量化和重新排名
作者:来自ElasticTomásMurúa在本文中,我们将介绍如何将阿里云AI功能与Elasticsearch集成,以提高语义搜索的相关性。阿里云人工智能搜索是一种将高级人工智能功能与Elasticsearch工具相结合的解决方案,利用QwenLLM/DeepSeek-R1系列提供高级推理和分类模型。在本文中,我们将使用同一作者撰写的小说和戏剧的描述来测试阿里巴巴重新排名和稀疏嵌入端点。步骤创建
- 智能任务管理工具:提升团队协作与项目执行力的利器
团队协作工具
智能任务管理工具是一类能够自动化处理任务分配、进度跟踪、团队协作等任务管理活动的软件。这类工具通常利用先进的算法和人工智能技术,帮助用户更高效地完成项目管理、日常任务规划等工作。以下是一些知名的智能任务管理工具及其特点:一、板栗看板●简介:一款智能驱动的高效任务管理工具,通过AI系统分析用户任务数据,自动设定任务优先级,并提供实时进度监控和智能任务分配功能。特点:○AI智能判断任务优先级,提高任务
- Python实现观察者模式
麦田里走一夜
PYTHONpython观察者模式开发语言
请关注【来玩AI】公众号体验人工智能来玩AI>>>Python实现观察者模式观察者模式python代码实现说明应用场景观察者模式模式是一种常用的设计模式,可以在对象之间建立一对多的依赖关系。Python中实现观察者模式有多种方式,下面给出一种基于类和装饰器的实现方式:python代码实现classObserver:defupdate(self,observable,*args,**kwargs):
- FPC在智能眼镜中的应用探索【新立电子】
珠海新立电子科技有限公司
智能眼镜fpc柔性线路板fpc软板
在智能穿戴设备领域,智能眼镜具有独特的便携性、交互性和功能性等特点,智能眼镜的设计追求轻薄、美观与高度集成化。传统刚性电路板因体积庞大、难以弯曲,无法满足智能眼镜的复杂结构需求,而FPC其轻薄、柔软、可弯曲的特性,成为智能眼镜电路板的理想选择。在智能眼镜中,FPC的应用无处不在。它不仅是连接显示屏、摄像头、传感器、电池等关键组件,同时还承担着信号传输、电源管理等。例如,在摄像头模块中,FPC将摄像
- 深入探讨Ceph:分布式存储架构的未来
深度Linux
ceph分布式架构C/C++
在数字化浪潮汹涌澎湃的当下,数据量呈爆发式增长,传统存储系统在应对海量数据存储、高并发访问以及灵活扩展等方面,逐渐显得力不从心。分布式存储技术应运而生,成为解决现代数据存储难题的关键方案,而Ceph作为分布式存储领域的佼佼者,正日益受到广泛关注和应用。Ceph以其卓越的性能、高可靠性、强大的扩展性以及开源的特性,在众多分布式存储系统中脱颖而出,被广泛应用于云计算、大数据、人工智能等前沿领域。无论是
- pytorch基础-layernormal 与 batchnormal
yuweififi
pytorch人工智能python
nn.LayerNorm(层归一化)和nn.BatchNorm(批量归一化)是深度学习中常用的两种归一化方法,都有助于提高模型的训练效率和稳定性,但它们在归一化维度、应用场景、计算方式等方面存在明显区别,以下为你详细介绍:1、归一化维度nn.LayerNorm:对单个样本的特征维度进行归一化。无论输入数据的形状如何,它会计算每个样本在特征维度上的均值和方差,然后进行归一化。例如,对于一个形状为(b
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙 alxw4616@msn.com
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,