——分布式文件系统(GFS),可用于处理海量网页的存储
——分布式计算框架MAPREDUCE,可用于处理海量网页的索引计算问题。
HDFS:分布式文件系统
MAPREDUCE:分布式运算程序开发框架
HIVE:基于大数据技术(文件系统+运算框架)的SQL数据仓库工具
HBASE:基于HADOOP的分布式海量数据库
ZOOKEEPER:分布式协调服务基础组件
Mahout:基于mapreduce/spark/flink等分布式运算框架的机器学习算法库
Oozie:工作流调度框架
Sqoop:数据导入导出工具
Flume:日志数据采集框架
一个应用广泛的数据分析系统:“web日志数据挖掘”
3.1.1 案例名称
“网站或APP点击流日志数据挖掘系统”[M1] 。
3.1.2 案例需求描述
“Web点击流日志”包含着网站运营很重要的信息,通过日志分析,我们可以知道网站的访问量,哪个网页访问人数最多,哪个网页最有价值,广告转化率、访客的来源信息,访客的终端信息等。
3.1.3 数据来源
本案例的数据主要由用户的点击行为记录
获取方式:在页面预埋一段js程序,为页面上想要监听的标签绑定事件,只要用户点击或移动到标签,即可触发ajax请求到后台servlet程序,用log4j记录下事件信息,从而在web服务器(nginx、tomcat等)上形成不断增长的日志文件。
形如:
58.215.204.118 - - [18/Sep/2013:06:51:35 +000] "GET /wp-includes/js/jquery/jquery.js?ver=1.10.2 HTTP/1.1" 304 0 "http://blog.fens.me/nodejs-socketio-chat/" "Mozilla/5.0 (Windows NT 5.1;rv:23.0) Gecko/20100101 Firefox/23.0" |
3.2.1 流程图解析
本案例跟典型的BI系统极其类似,整体流程如下:
但是,由于本案例的前提是处理海量数据,因而,流程中各环节所使用的技术则跟传统BI完全不同。
3.2.2 项目技术架构图
3.2.3 项目相关截图
Mapreudce程序运行
./sqoop export --connect jdbc:mysql://localhost:3306/weblogdb --username root --password root --table t_display_xx --export-dir /user/hive/warehouse/uv/dt=2014-08-03 |
经过完整的数据处理流程后,会周期性输出各类统计指标的报表,在生产实践中,最终需要将这些报表数据以可视化的形式展现出来,本案例采用web程序来实现数据可视化
效果如下所示:
大数据架构流程
1 web或者是硬件系统,做数据采集或者流量采集
2进入kafka数据队列
3如果是事实计算则通过spark-stream/storm做实时计算
4 如果是离线计算,则把数据导入到分布式文件系统HDFS中
5 通过hadoop离线分布式计算平台(mahout机器学习),对hdfs进行数据处理
6 hadoop处理好的数据导入的hive数据库中
7 通过hive的sql 查询脚本,做ETL数据抽取
8 把实时计算或者经过数据抽取的数据通过sqoop导入到数据库
9 通过搭建web平台,对处理出来的数据做图形报表展示
先上传hadoop的安装包到服务器上去/home/hadoop/
注意:hadoop2.x的配置文件$HADOOP_HOME/etc/hadoop
伪分布式需要修改5个配置文件
vim hadoop-env.sh
export JAVA_HOME=/usr/java/jdk1.7.0_65
mv mapred-site.xml.template mapred-site.xml
vim mapred-site.xml
vim /etc/proflie
export JAVA_HOME=/usr/java/jdk1.7.0_65
export HADOOP_HOME=/itcast/hadoop-2.4.1
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
source /etc/profile
hdfs namenode -format (hadoop namenode -format)
(1)ssh-keygen //生成密钥
(2)ssh-copy-id host1 //登陆到主机1
(3)ssh-copy-id host2 //登陆到主机2
(4)ssh-copy-id host3 //登陆到主机3
先启动HDFS
sbin/start-dfs.sh
再启动YARN
sbin/start-yarn.sh
使用jps命令验证
27408 NameNode
28218 Jps
27643 SecondaryNameNode
28066 NodeManager
27803 ResourceManager
27512 DataNode
http://192.168.1.101:50070 (HDFS管理界面)
http://192.168.1.101:8088 (MR管理界面)
首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件
其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;
重要特性如下:
——namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)
---- datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)
HDFS提供shell命令行客户端,使用方法如下:
[-appendToFile [-cat [-ignoreCrc] [-checksum [-chgrp [-R] GROUP PATH...] [-chmod [-R] [-chown [-R] [OWNER][:[GROUP]] PATH...] [-copyFromLocal [-f] [-p] [-copyToLocal [-p] [-ignoreCrc] [-crc] [-count [-q] [-cp [-f] [-p] [-createSnapshot [-deleteSnapshot [-df [-h] [ [-du [-s] [-h] [-expunge] [-get [-p] [-ignoreCrc] [-crc] [-getfacl [-R] [-getmerge [-nl] [-help [cmd ...]] [-ls [-d] [-h] [-R] [ [-mkdir [-p] [-moveFromLocal [-moveToLocal [-mv [-put [-f] [-p] [-renameSnapshot [-rm [-f] [-r|-R] [-skipTrash] [-rmdir [--ignore-fail-on-non-empty] [-setfacl [-R] [{-b|-k} {-m|-x [-setrep [-R] [-w] [-stat [format] [-tail [-f] [-test -[defsz] [-text [-ignoreCrc] [-touchz [-usage [cmd ...]] |
-help 功能:输出这个命令参数手册 |
-ls 功能:显示目录信息 示例: hadoop fs -ls hdfs://hadoop-server01:9000/ 备注:这些参数中,所有的hdfs路径都可以简写 -->hadoop fs -ls / 等同于上一条命令的效果 |
-mkdir 功能:在hdfs上创建目录 示例:hadoop fs -mkdir -p /aaa/bbb/cc/dd |
-moveFromLocal 功能:从本地剪切粘贴到hdfs 示例:hadoop fs - moveFromLocal /home/hadoop/a.txt /aaa/bbb/cc/dd -moveToLocal 功能:从hdfs剪切粘贴到本地 示例:hadoop fs - moveToLocal /aaa/bbb/cc/dd /home/hadoop/a.txt |
--appendToFile 功能:追加一个文件到已经存在的文件末尾 示例:hadoop fs -appendToFile ./hello.txt hdfs://hadoop-server01:9000/hello.txt 可以简写为: Hadoop fs -appendToFile ./hello.txt /hello.txt
|
-cat 功能:显示文件内容 示例:hadoop fs -cat /hello.txt
-tail 功能:显示一个文件的末尾 示例:hadoop fs -tail /weblog/access_log.1 -text 功能:以字符形式打印一个文件的内容 示例:hadoop fs -text /weblog/access_log.1 |
-chgrp -chmod -chown 功能:linux文件系统中的用法一样,对文件所属权限 示例: hadoop fs -chmod 666 /hello.txt hadoop fs -chown someuser:somegrp /hello.txt |
-copyFromLocal 功能:从本地文件系统中拷贝文件到hdfs路径去 示例:hadoop fs -copyFromLocal ./jdk.tar.gz /aaa/ -copyToLocal 功能:从hdfs拷贝到本地 示例:hadoop fs -copyToLocal /aaa/jdk.tar.gz |
-cp 功能:从hdfs的一个路径拷贝hdfs的另一个路径 示例: hadoop fs -cp /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
-mv 功能:在hdfs目录中移动文件 示例: hadoop fs -mv /aaa/jdk.tar.gz / |
-get 功能:等同于copyToLocal,就是从hdfs下载文件到本地 示例:hadoop fs -get /aaa/jdk.tar.gz -getmerge 功能:合并下载多个文件 示例:比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,... hadoop fs -getmerge /aaa/log.* ./log.sum |
-put 功能:等同于copyFromLocal 示例:hadoop fs -put /aaa/jdk.tar.gz /bbb/jdk.tar.gz.2
|
-rm 功能:删除文件或文件夹 示例:hadoop fs -rm -r /aaa/bbb/
-rmdir 功能:删除空目录 示例:hadoop fs -rmdir /aaa/bbb/ccc |
-df 功能:统计文件系统的可用空间信息 示例:hadoop fs -df -h /
-du 功能:统计文件夹的大小信息 示例: hadoop fs -du -s -h /aaa/*
|
-count 功能:统计一个指定目录下的文件节点数量 示例:hadoop fs -count /aaa/
|
-setrep 功能:设置hdfs中文件的副本数量 示例:hadoop fs -setrep 3 /aaa/jdk.tar.gz <这里设置的副本数只是记录在namenode的元数据中,是否真的会有这么多副本,还得看datanode的数量>
|
如图所示是hdfs的工作原理,首先客户端先把文件进行切块,然后客户端向namenode询问是否可以上传,如果可以,namenode将高诉客户端可以上传的节点。客户端再向datanode发起管道连接,最后客户端以packege的方式同步数据到各个datanode节点。
如上图是namenode与secondnamenode的元数据管理机制。如图可以看出namenode的元数据备份是通过secondnamenode进行及时回显来调用的,也就是edit文件被secondnamenode及时下载以后,与原有的文件进行合并,并且备份到namenode节点上。
shuffle是MR处理流程中的一个过程,它的每一个处理步骤是分散在各个map task和reduce task节点上完成的,整体来看,分为3个操作:
Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快
缓冲区的大小可以通过参数调整, 参数:io.sort.mb 默认100M
一般中型的网站(10W的PV以上),每天会产生1G以上Web日志文件。大型或超大型的网站,可能每小时就会产生10G的数据量。
具体来说,比如某电子商务网站,在线团购业务。每日PV数100w,独立IP数5w。用户通常在工作日上午10:00-12:00和下午15:00-18:00访问量最大。日间主要是通过PC端浏览器访问,休息日及夜间通过移动设备访问较多。网站搜索浏量占整个网站的80%,PC用户不足1%的用户会消费,移动用户有5%会消费。
对于日志的这种规模的数据,用HADOOP进行日志分析,是最适合不过的了。