决策树是广泛用于分类和回归任务的模型。本质上,它从一层层的 if / else 问题中进行学习,并得到结论。
这些问题类似于你在 “20 Questions” 游戏中可能会问的问题。想象一下,你想要区分下面这四种动物:熊、鹰、企鹅和海豚。你的目标是通过提出尽可能少的 if / else 问题来得到正确答案。你可能首先会问:这种动物有没有羽毛,这个问题会将可能的动物减少到只有两种。如果答案是“有”,你可以问下一个问题,帮你区分鹰和企鹅。例如,你可以问这种动物会不会飞。如果这种动物没有羽毛,那么可能是海豚或熊,所以你需要问一个问题来区分这两种动物——比如问这种动物有没有鳍。
一种室内游戏,其中一人想象一个对象,其他人轮流通过向他提问来猜测这个对象,他只能回答“是”或“否”。如果 20 轮问题过后仍没人猜出,则这个人获胜。
这一系列问题可以表示为一棵决策树,如下图所示:
mglearn.plots.plot_animal_tree()
在这张图中,树的每个结点代表一个问题或一个包含答案的终结点(也叫叶结点)。树的边将问题的答案与将问的下一个问题连接起来。
用机器学习的语言来说就是,为了区分四类动物(鹰、企鹅、海豚和熊),我们利用三个特征( “有没有羽毛” “会不会飞” 和 “有没有鳍”)来构建一个模型。我们可以利用监督学习从数据中学习模型,而无需人为构建模型。
我们在下图所示的二维分类数据集上构造决策树。这个数据集由 2 个半月形组成,每个类别都包含 50 个数据点。我们将这个数据集称为 two_moons
。
学习决策树,就是学习一系列 if / else 问题,使我们能够以最快的速度得到正确答案。在机器学习中,这些问题叫作测试(不要与测试集弄混,测试集是用来测试模型泛化性能的数据)。数据通常并不是像动物的例子那样具有二元特征(是 / 否)的形式,而是表示为连续特征,比如下图所示的二维数据集。用于连续数据的测试形式是:“特征 i 的值是否大于 a?”
mglearn.plots.plot_tree_progressive()
为了构造决策树,算法搜遍所有可能的测试,找出对目标变量来说信息量最大的那一个。下图展示了选出的第一个测试。将数据集在 x[1]=0.0596
处垂直划分可以得到最多信息,它在最大程度上将类别 0 中的点与类别 1 中的点进行区分。顶结点(也叫根结点)表示整个数据集,包含属于类别 0 的 50 个点和属于类别 1 的 50 个点。通过测试 x[1] <= 0.0596
的真假来对数据集进行划分,在图中表示为一条黑线。如果测试结果为真,那么将这个点分配给左结点,左结点里包含属于类别 0 的 2 个点和属于类别 1 的 32 个点。否则将这个点分配给右结点,右结点里包含属于类别 0 的 48 个点和属于类别 1 的 18 个点。这两个结点对应于图 2-24 中的顶部区域和底部区域。尽管第一次划分已经对两个类别做了很好的区分,但底部区域仍包含属于类别 0 的点,顶部区域也仍包含属于类别 1 的点。我们可以在两个区域中重复寻找最佳测试的过程,从而构建出更准确的模型。
下图展示了信息量最大的下一次划分,这次划分是基于 x[0]
做出的,分为左右两个区域。
这一递归过程生成一棵二元决策树,其中每个结点都包含一个测试。或者你可以将每个测试看成沿着一条轴对当前数据进行划分。这是一种将算法看作分层划分的观点。由于每个测试仅关注一个特征,所以划分后的区域边界始终与坐标轴平行。
对数据反复进行递归划分,直到划分后的每个区域(决策树的每个叶结点)只包含单一目标值(单一类别或单一回归值)。如果树中某个叶结点所包含数据点的目标值都相同,那么这个叶结点就是纯的(pure)。这个数据集的最终划分结果见下图。
想要对新数据点进行预测,首先要查看这个点位于特征空间划分的哪个区域,然后将该区域的多数目标值(如果是纯的叶结点,就是单一目标值)作为预测结果。从根结点开始对树进行遍历就可以找到这一区域,每一步向左还是向右取决于是否满足相应的测试。
决策树也可以用于回归任务,使用的方法完全相同。预测的方法是,基于每个结点的测试对树进行遍历,最终找到新数据点所属的叶结点。这一数据点的输出即为此叶结点中所有训练点的平均目标值。
通常来说,构造决策树直到所有叶结点都是纯的叶结点,这会导致模型非常复杂,并且对训练数据高度过拟合。纯叶结点的存在说明这棵树在训练集上的精度是 100%。训练集中的每个数据点都位于分类正确的叶结点中。在上图的左图中可以看出过拟合。你可以看到,在所有属于类别 0 的点中间有一块属于类别 1 的区域。另一方面,有一小条属于类别 0 的区域,包围着最右侧属于类别 0 的那个点。这并不是人们想象中决策边界的样子,这个决策边界过于关注远离同类别其他点的单个异常点。
防止过拟合有两种常见的策略:一种是及早停止树的生长,也叫预剪枝(pre-pruning);另一种是先构造树,但随后删除或折叠信息量很少的结点,也叫后剪枝(post-pruning)或 剪枝(pruning)。预剪枝的限制条件可能包括限制树的最大深度、限制叶结点的最大数目,或者规定一个结点中数据点的最小数目来防止继续划分。
scikit-learn
的决策树在 DecisionTreeRegressor
类和 DecisionTreeClassifier
类中实现。scikit-learn
只实现了预剪枝,没有实现后剪枝。
我们在乳腺癌数据集上更详细地看一下预剪枝的效果。和前面一样,我们导入数据集并将其分为训练集和测试集。然后利用默认设置来构建模型,默认将树完全展开(树不断分支,直到所有叶结点都是纯的)。我们固定树的 random_state
,用于在内部解决平局问题:
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
cancer.data, cancer.target, stratify=cancer.target, random_state=42)
tree = DecisionTreeClassifier(random_state=0)
tree.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
# Accuracy on training set: 1.000
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))
# Accuracy on test set: 0.937
不出所料,训练集上的精度是 100%,这是因为叶结点都是纯的,树的深度很大,足以完美地记住训练数据的所有标签。测试集精度比之前讲过的线性模型略低,线性模型的精度约为 95%。
如果我们不限制决策树的深度,它的深度和复杂度都可以变得特别大。因此,未剪枝的树容易过拟合,对新数据的泛化性能不佳。现在我们将预剪枝应用在决策树上,这可以在完美拟合训练数据之前阻止树的展开。一种选择是在到达一定深度后停止树的展开。这里我们设置 max_depth=4
,这意味着只可以连续问 4 个问题。限制树的深度可以减少过拟合。这会降低训练集的精度,但可以提高测试集的精度:
tree = DecisionTreeClassifier(max_depth=4, random_state=0)
tree.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
# Accuracy on training set: 0.988
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))
# Accuracy on test set: 0.951
我们可以利用 tree
模块的 export_graphviz
函数来将树可视化。这个函数会生成一个 .dot 格式的文件,这是一种用于保存图形的文本文件格式。我们设置为结点添加颜色的选项,颜色表示每个结点中的多数类别,同时传入类别名称和特征名称,这样可以对树正确标记:
from sklearn.tree import export_graphviz
export_graphviz(tree, out_file="tree.dot", class_names=["malignant","benign"],
feature_names=cancer.feature_names, impurity=False, filled=True)
我们可以利用 graphviz
模块读取这个文件并将其可视化(你也可以使用任何能够读取 .dot 文件的程序),见下图:
import graphviz
with open("tree.dot") as f:
dot_graph = f.read()
graphviz.Source(dot_graph)
命令行输入:
(base) E:\practice\python\代码练习\机器学习基础教程\监督学习>dot -Tjpg tree.dot -o tree.jpg
树的可视化有助于深入理解算法是如何进行预测的,也是易于向非专家解释的机器学习算法的优秀示例。不过,即使这里树的深度只有 4 层,也有点太大了。深度更大的树(深度为 10 并不罕见)更加难以理解。一种观察树的方法可能有用,就是找出大部分数据的实际路径。上图中每个结点的 samples
给出了该结点中的样本个数,values
给出的是每个类别的样本个数。观察 worst radius <= 16.795
分支右侧的子结点,我们发现它只包含 8 个良性样本,但有 134 个恶性样本。树的这一侧的其余分支只是利用一些更精细的区别将这 8 个良性样本分离出来。在第一次划分右侧的 142 个样本中,几乎所有样本(132 个)最后都进入最右侧的叶结点中。
再来看一下根结点的左侧子结点,对于 worst radius > 16.795
,我们得到 25 个恶性样本和 259 个良性样本。几乎所有良性样本最终都进入左数第二个叶结点中,大部分其他叶结点都只包含很少的样本。
查看整个树可能非常费劲,除此之外,我还可以利用一些有用的属性来总结树的工作原理。其中最常用的是特征重要性(feature importance),它为每个特征对树的决策的重要性进行排序。对于每个特征来说,它都是一个介于 0 和 1 之间的数字,其中 0 表示“根本没用到”,1 表示“完美预测目标值”。特征重要性的求和始终为 1:
print("Feature importances:\n{}".format(tree.feature_importances_))
'''
Feature importances:
[0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.01019737 0.04839825
0. 0. 0.0024156 0. 0. 0.
0. 0. 0.72682851 0.0458159 0. 0.
0.0141577 0. 0.018188 0.1221132 0.01188548 0. ]
'''
我们可以将特征重要性可视化,与我们将线性模型的系数可视化的方法类似:
def plot_feature_importances_cancer(model):
n_features = cancer.data.shape[1]
plt.barh(np.arange(n_features), model.feature_importances_, align='center')
plt.yticks(np.arange(n_features), cancer.feature_names)
plt.xlabel("Feature importance")
plt.ylabel("Feature")
plt.ylim(-1, n_features)
plot_feature_importances_cancer(tree)
这里我们看到,顶部划分用到的特征(“worst radius”)是最重要的特征。这也证实了我们在分析树时的观察结论,即第一层划分已经将两个类别区分得很好。
但是,如果某个特征的 feature_importance_
很小,并不能说明这个特征没有提供任何信息。这只能说明该特征没有被树选中,可能是因为另一个特征也包含了同样的信息。
与线性模型的系数不同,特征重要性始终为正数,也不能说明该特征对应哪个类别。特征重要性告诉我们 “worst radius”(最大半径)特征很重要,但并没有告诉我们半径大表示样本是良性还是恶性。事实上,在特征和类别之间可能没有这样简单的关系,你可以在下面的例子中看出这一点:
tree = mglearn.plots.plot_tree_not_monotone()
plt.show()
该图显示的是有两个特征和两个类别的数据集。这里所有信息都包含在 X[1]
中,没有用到 X[0]
。但 X[1]
和输出类别之间并不是单调关系,即我们不能这么说:“较大的 X[1]
对应类别 0,较小的 X[1]
对应类别 1”(反之亦然)。
虽然我们主要讨论的是用于分类的决策树,但对用于回归的决策树来说,所有内容都是类似的,在 DecisionTreeRegressor
中实现。回归树的用法和分析与分类树非常类似。但在将基于树的模型用于回归时,我们想要指出它的一个特殊性质。DecisionTreeRegressor
(以及其他所有基于树的回归模型)不能外推(extrapolate),也不能在训练数据范围之外进行预测。
我们利用计算机内存(RAM)历史价格的数据集来更详细地研究这一点。下图给出了这个数据集的图像,x 轴为日期,y 轴为那一年 1 兆字节(MB)RAM 的价格:
import os
ram_prices = pd.read_csv(os.path.join(".\\ram_price.csv"))
plt.semilogy(ram_prices.date, ram_prices.price)
plt.xlabel("Year")
plt.ylabel("Price in $/Mbyte")
注意 y 轴的对数刻度。在用对数坐标绘图时,二者的线性关系看起来非常好,所以预测应该相对比较容易,除了一些不平滑之处之外。
我们将利用 2000 年前的历史数据来预测 2000 年后的价格,只用日期作为特征。我们将对比两个简单的模型:DecisionTreeRegressor
和 LinearRegression
。我们对价格取对数,使得二者关系的线性相对更好。这对 DecisionTreeRegressor
不会产生什么影响,但对 LinearRegression
的影响却很大。训练模型并做出预测之后,我们应用指数映射来做对数变换的逆运算。为了便于可视化,我们这里对整个数据集进行预测,但如果是为了定量评估,我们将只考虑测试数据集:
from sklearn.tree import DecisionTreeRegressor
# 利用历史数据预测2000年后的价格
data_train = ram_prices[ram_prices.date < 2000]
data_test = ram_prices[ram_prices.date >= 2000]
# 基于日期来预测价格
X_train = data_train.date[:, np.newaxis]
# 我们利用对数变换得到数据和目标之间更简单的关系
y_train = np.log(data_train.price)
tree = DecisionTreeRegressor().fit(X_train, y_train)
linear_reg = LinearRegression().fit(X_train, y_train)
# 对所有数据进行预测
X_all = ram_prices.date[:, np.newaxis]
pred_tree = tree.predict(X_all)
pred_lr = linear_reg.predict(X_all)
# 对数变换逆运算
price_tree = np.exp(pred_tree)
price_lr = np.exp(pred_lr)
这里创建的下图将决策树和线性回归模型的预测结果与真实值进行对比:
plt.semilogy(data_train.date, data_train.price, label="Training data")
plt.semilogy(data_test.date, data_test.price, label="Test data")
plt.semilogy(ram_prices.date, price_tree, label="Tree prediction")
plt.semilogy(ram_prices.date, price_lr, label="Linear prediction")
plt.legend()
两个模型之间的差异非常明显。线性模型用一条直线对数据做近似,这是我们所知道的。这条线对测试数据(2000 年后的价格)给出了相当好的预测,不过忽略了训练数据和测试数据中一些更细微的变化。与之相反,树模型完美预测了训练数据。由于我们没有限制树的复杂度,因此它记住了整个数据集。但是,一旦输入超出了模型训练数据的范围,模型就只能持续预测最后一个已知数据点。树不能在训练数据的范围之外生成 “新的” 响应。所有基于树的模型都有这个缺点。
参数
控制决策树模型复杂度的参数是预剪枝参数,它在树完全展开之前停止树的构造。通常来说,选择一种预剪枝策略(设置 max_depth
、max_leaf_nodes
或 min_samples_leaf
)足以防止过拟合。
优点
决策树有两个优点:
由于每个特征被单独处理,而且数据的划分也不依赖于缩放,因此决策树算法不需要特征预处理,比如归一化或标准化。特别是特征的尺度完全不一样时或者二元特征和连续特征同时存在时,决策树的效果很好。
缺点
即使做了预剪枝,它也经常会过拟合,泛化性能很差。因此,在大多数应用中,往往使用集成方法来替代单棵决策树。
集成(ensemble)是合并多个机器学习模型来构建更强大模型的方法。在机器学习文献中有许多模型都属于这一类,但已证明有两种集成模型对大量分类和回归的数据集都是有效的,二者都以决策树为基础,分别是随机森林(random forest)和梯度提升决策树(gradient boosted decision tree)。
我们刚刚说过,决策树的一个主要缺点在于经常对训练数据过拟合。随机森林是解决这个问题的一种方法。随机森林本质上是许多决策树的集合,其中每棵树都和其他树略有不同。随机森林背后的思想是,每棵树的预测可能都相对较好,但可能对部分数据过拟合。如果构造很多树,并且每棵树的预测都很好,但都以不同的方式过拟合,那么我们可以对这些树的结果取平均值来降低过拟合。既能减少过拟合又能保持树的预测能力,这可以在数学上严格证明。
为了实现这一策略,我们需要构造许多决策树。每棵树都应该对目标值做出可以接受的预测,还应该与其他树不同。随机森林的名字来自于将随机性添加到树的构造过程中,以确保每棵树都各不相同。随机森林中树的随机化方法有两种:一种是通过选择用于构造树的数据点,另一种是通过选择每次划分测试的特征。我们来更深入地研究这一过程。
想要构造一个随机森林模型,你需要确定用于构造的树的个数(RandomForestRegressor
或 RandomForestClassifier
的 n_estimators
参数)。比如我们想要构造 10 棵树。这些树在构造时彼此完全独立,算法对每棵树进行不同的随机选择,以确保树和树之间是有区别的。想要构造一棵树,首先要对数据进行自助采样(bootstrap sample)。也就是说,从 n_samples
个数据点中有放回地(即同一样本可以被多次抽取)重复随机抽取一个样本,共抽取 n_samples
次。这样会创建一个与原数据集大小相同的数据集,但有些数据点会缺失(大约三分之一),有些会重复。
举例说明,比如我们想要创建列表 ['a', 'b', 'c', 'd']
的自助采样。一种可能的自主采样是 ['b', 'd', 'd', 'c']
,另一种可能的采样为 ['d', 'a', 'd', 'a']
。
接下来,基于这个新创建的数据集来构造决策树。但是,要对我们在介绍决策树时描述的算法稍作修改。在每个结点处,算法随机选择特征的一个子集,并对其中一个特征寻找最佳测试,而不是对每个结点都寻找最佳测试。选择的特征个数由 max_features
参数来控制。每个结点中特征子集的选择是相互独立的,这样树的每个结点可以使用特征的不同子集来做出决策。
由于使用了自助采样,随机森林中构造每棵决策树的数据集都是略有不同的。由于每个结点的特征选择,每棵树中的每次划分都是基于特征的不同子集。这两种方法共同保证随机森林中所有树都不相同。
在这个过程中的一个关键参数是 max_features
。如果我们设置 max_features
等于 n_features
,那么每次划分都要考虑数据集的所有特征,在特征选择的过程中没有添加随机性(不过自助采样依然存在随机性)。如果设置 max_features
等于 1
,那么在划分时将无法选择对哪个特征进行测试,只能对随机选择的某个特征搜索不同的阈值。因此,如果 max_features
较大,那么随机森林中的树将会十分相似,利用最独特的特征可以轻松拟合数据。如果 max_features
较小,那么随机森林中的树将会差异很大,为了很好地拟合数据,每棵树的深度都要很大。
想要利用随机森林进行预测,算法首先对森林中的每棵树进行预测。对于回归问题,我们可以对这些结果取平均值作为最终预测。对于分类问题,则用到了“软投票”(soft voting)策略。也就是说,每个算法做出“软”预测,给出每个可能的输出标签的概率。对所有树的预测概率取平均值,然后将概率最大的类别作为预测结果。
分析随机森林。下面将由 5 棵树组成的随机森林应用到前面研究过的 two_moons
数据集上:
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
X, y = make_moons(n_samples=100, noise=0.25, random_state=3)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,
random_state=42)
forest = RandomForestClassifier(n_estimators=5, random_state=2)
forest.fit(X_train, y_train)
作为随机森林的一部分,树被保存在 estimator_
属性中。我们将每棵树学到的决策边界可视化,也将它们的总预测(即整个森林做出的预测)可视化:
fig, axes = plt.subplots(2, 3, figsize=(20, 10))
for i, (ax, tree) in enumerate(zip(axes.ravel(), forest.estimators_)):
ax.set_title("Tree {}".format(i))
mglearn.plots.plot_tree_partition(X_train, y_train, tree, ax=ax)
mglearn.plots.plot_2d_separator(forest, X_train, fill=True, ax=axes[-1, -1],
alpha=.4)
axes[-1, -1].set_title("Random Forest")
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
你可以清楚地看到,这 5 棵树学到的决策边界大不相同。每棵树都犯了一些错误,因为这里画出的一些训练点实际上并没有包含在这些树的训练集中,原因在于自助采样。
随机森林比单独每一棵树的过拟合都要小,给出的决策边界也更符合直觉。在任何实际应用中,我们会用到更多棵树(通常是几百或上千),从而得到更平滑的边界。
再举一个例子,我们将包含 100 棵树的随机森林应用在乳腺癌数据集上:
X_train, X_test, y_train, y_test = train_test_split(
cancer.data, cancer.target, random_state=0)
forest = RandomForestClassifier(n_estimators=100, random_state=0)
forest.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(forest.score(X_train, y_train)))
# Accuracy on training set: 1.000
print("Accuracy on test set: {:.3f}".format(forest.score(X_test, y_test)))
# Accuracy on test set: 0.972
在没有调节任何参数的情况下,随机森林的精度为 97%,比线性模型或单棵决策树都要好。我们可以调节 max_features
参数,或者像单棵决策树那样进行预剪枝。但是,随机森林的默认参数通常就已经可以给出很好的结果。
与决策树类似,随机森林也可以给出特征重要性,计算方法是将森林中所有树的特征重要性求和并取平均。一般来说,随机森林给出的特征重要性要比单棵树给出的更为可靠。
def plot_feature_importances_cancer(model):
n_features = cancer.data.shape[1]
plt.barh(np.arange(n_features), model.feature_importances_, align='center')
plt.yticks(np.arange(n_features), cancer.feature_names)
plt.xlabel("Feature importance")
plt.ylabel("Feature")
plt.ylim(-1, n_features)
plot_feature_importances_cancer(forest)
如你所见,与单棵树相比,随机森林中有更多特征的重要性不为零。与单棵决策树类似,随机森林也给了“worst radius”(最大半径)特征很大的重要性,但从总体来看,它实际上却选择“worst perimeter”(最大周长)作为信息量最大的特征。由于构造随机森林过程中的随机性,算法需要考虑多种可能的解释,结果就是随机森林比单棵树更能从总体把握数据的特征。
参数
需要调节的重要参数有 n_estimators
和 max_features
,可能还包括预剪枝选项(如 max_depth
)。
n_estimators
总是越大越好。对更多的树取平均可以降低过拟合,从而得到鲁棒性更好的集成。不过收益是递减的,而且树越多需要的内存也越多,训练时间也越长。常用的经验法则就是“在你的时间 / 内存允许的情况下尽量多”。max_features
决定每棵树的随机性大小,较小的 max_features
可以降低过拟合。一般来说,好的经验就是使用默认值:对于分类,默认值是 max_features=sqrt(n_features)
;对于回归,默认值是 max_features=n_features
。增大 max_features
或 max_leaf_nodes
有时也可以提高性能。它还可以大大降低用于训练和预测的时间和空间要求。优点
用于回归和分类的随机森林是目前应用最广泛的机器学习方法之一。这种方法非常强大,通常不需要反复调节参数就可以给出很好的结果,也不需要对数据进行缩放。
从本质上看,随机森林拥有决策树的所有优点,同时弥补了决策树的一些缺陷。
缺点
仍然使用决策树的一个原因是需要决策过程的紧凑表示。基本上不可能对几十棵甚至上百棵树做出详细解释,随机森林中树的深度往往比决策树还要大(因为用到了特征子集)。因此,如果你需要以可视化的方式向非专家总结预测过程,那么选择单棵决策树可能更好。
虽然在大型数据集上构建随机森林可能比较费时间,但在一台计算机的多个 CPU 内核上并行计算也很容易。如果你用的是多核处理器(几乎所有的现代化计算机都是),你可以用 n_jobs
参数来调节使用的内核个数。使用更多的 CPU 内核,可以让速度线性增加(使用 2 个内核,随机森林的训练速度会加倍),但设置 n_jobs
大于内核个数是没有用的。你可以设置 n_jobs=-1
来使用计算机的所有内核。
你应该记住,随机森林本质上是随机的,设置不同的随机状态(或者不设置 random_state
参数)可以彻底改变构建的模型。森林中的树越多,它对随机状态选择的鲁棒性就越好。如果你希望结果可以重现,固定 random_state
是很重要的。
对于维度非常高的稀疏数据(比如文本数据),随机森林的表现往往不是很好。对于这种数据,使用线性模型可能更合适。即使是非常大的数据集,随机森林的表现通常也很好,训练过程很容易并行在功能强大的计算机的多个 CPU 内核上。不过,随机森林需要更大的内存,训练和预测的速度也比线性模型要慢。对一个应用来说,如果时间和内存很重要的话,那么换用线性模型可能更为明智。
梯度提升回归树是另一种集成方法,通过合并多个决策树来构建一个更为强大的模型。虽然名字中含有 “回归”,但这个模型既可以用于回归也可以用于分类。与随机森林方法不同,梯度提升采用连续的方式构造树,每棵树都试图纠正前一棵树的错误。默认情况下,梯度提升回归树中没有随机化,而是用到了强预剪枝。梯度提升树通常使用深度很小(1 到 5 之间)的树,这样模型占用的内存更少,预测速度也更快。
梯度提升背后的主要思想是合并许多简单的模型(在这个语境中叫作弱学习器),比如深度较小的树。每棵树只能对部分数据做出好的预测,因此,添加的树越来越多,可以不断迭代提高性能。
梯度提升树经常是机器学习竞赛的优胜者,并且广泛应用于业界。与随机森林相比,它通常对参数设置更为敏感,但如果参数设置正确的话,模型精度更高。
除了预剪枝与集成中树的数量之外,梯度提升的另一个重要参数是 learning_rate
(学习率),用于控制每棵树纠正前一棵树的错误的强度。较高的学习率意味着每棵树都可以做出较强的修正,这样模型更为复杂。通过增大 n_estimators
来向集成中添加更多树,也可以增加模型复杂度,因为模型有更多机会纠正训练集上的错误。
下面是在乳腺癌数据集上应用 GradientBoostingClassifier
的示例。默认使用 100 棵树,最大深度是 3,学习率为 0.1:
X_train, X_test, y_train, y_test = train_test_split(
cancer.data, cancer.target, random_state=0)
gbrt = GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
# Accuracy on training set: 1.000
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))
# Accuracy on test set: 0.965
由于训练集精度达到 100%,所以很可能存在过拟合。为了降低过拟合,我们可以限制最大深度来加强预剪枝,也可以降低学习率:
# 限制最大深度
gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
# Accuracy on training set: 0.991
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))
# Accuracy on test set: 0.972
# 降低学习率
gbrt = GradientBoostingClassifier(random_state=0, learning_rate=0.01)
gbrt.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
# Accuracy on training set: 0.988
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))
# Accuracy on test set: 0.965
降低模型复杂度的两种方法都降低了训练集精度,这和预期相同。在这个例子中,减小树的最大深度显著提升了模型性能,而降低学习率仅稍稍提高了泛化性能。
对于其他基于决策树的模型,我们也可以将特征重要性可视化,以便更好地理解模型。由于我们用到了 100 棵树,所以即使所有树的深度都是 1,查看所有树也是不现实的:
gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train, y_train)
def plot_feature_importances_cancer(model):
n_features = cancer.data.shape[1]
plt.barh(np.arange(n_features), model.feature_importances_, align='center')
plt.yticks(np.arange(n_features), cancer.feature_names)
plt.xlabel("Feature importance")
plt.ylabel("Feature")
plt.ylim(-1, n_features)
plot_feature_importances_cancer(gbrt)
可以看到,梯度提升树的特征重要性与随机森林的特征重要性有些类似,不过梯度提升完全忽略了某些特征。
由于梯度提升和随机森林两种方法在类似的数据上表现得都很好,因此一种常用的方法就是先尝试随机森林,它的鲁棒性很好。如果随机森林效果很好,但预测时间太长,或者机器学习模型精度小数点后第二位的提高也很重要,那么切换成梯度提升通常会有用。
参数
梯度提升树模型的主要参数包括树的数量 n_estimators
和学习率 learning_rate
。learning_rate
用于控制每棵树对前一棵树的错误的纠正强度。这两个参数高度相关,因为 learning_rate
越低,就需要更多的树来构建具有相似复杂度的模型。随机森林的 n_estimators
值总是越大越好,但梯度提升不同,增大 n_estimators
会导致模型更加复杂,进而可能导致过拟合。通常的做法是根据时间和内存的预算选择合适的 n_estimators
,然后对不同的 learning_rate
进行遍历。
另一个重要参数是 max_depth
(或 max_leaf_nodes
),用于降低每棵树的复杂度。梯度提升模型的 max_depth
通常都设置得很小,一般不超过 5。
优点
梯度提升决策树是监督学习中最强大也最常用的模型之一。
缺点
其主要缺点是需要仔细调参,而且训练时间可能会比较长。与其他基于树的模型类似,这一算法不需要对数据进行缩放就可以表现得很好,而且也适用于二元特征与连续特征同时存在的数据集。与其他基于树的模型相同,它也通常不适用于高维稀疏数据。