- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- 自动驾驶中的虚实迁移学习:降低对真实世界数据的依赖
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,迁移学习,虚实环境,数据效率,深度学习,强化学习1.背景介绍自动驾驶技术作为人工智能领域的重要应用之一,其发展离不开海量真实世界驾驶数据。然而,收集和标注真实世界驾驶数据成本高昂,且存在安全隐患。因此,如何降低对真实世界数据的依赖,提高自动驾驶系统的训练效率和安全性,成为一个亟待解决的关键问题。虚实迁移学习(Virtual-to-RealTransferLearning)作为一种新兴的机
- 大模型GUI系列论文阅读 DAY2续2:《使用指令微调基础模型的多模态网页导航》
feifeikon
论文阅读
摘要自主网页导航的进展一直受到以下因素的阻碍:依赖于数十亿次的探索性交互(通常采用在线强化学习),依赖于特定领域的模型设计,难以利用丰富的跨领域数据进行泛化。在本研究中,我们探讨了基于视觉-语言基础模型的数据驱动离线训练方法,以改进网页代理的性能。我们提出了一种名为WebGUM的指令跟随多模态代理,该代理能够同时观察网页截图和HTML页面,并输出网页导航操作,例如点击和输入文本等。WebGUM通过
- 强化学习代码实践1.DDQN:在CartPole游戏中实现 Double DQN
洪小帅
游戏pythongympytorch深度学习
强化学习代码实践1.DDQN:在CartPole游戏中实现DoubleDQN1.导入依赖2.定义Q网络3.创建Agent4.训练过程5.解释6.调整超参数在CartPole游戏中实现DoubleDQN(DDQN)训练网络时,我们需要构建一个使用两个Q网络(一个用于选择动作,另一个用于更新目标)的方法。DoubleDQN通过引入目标网络来减少Q-learning中过度估计的偏差。下面是一个基于PyT
- 软件工程师(一)
玉茗685
笔记经验分享
目录计算机系统知识总结一、计算机系统基础知识(一)中央处理单元(CPU)(二)数据表示(三)海明码程序设计语言基础知识总结一、程序设计语言概述(一)基本概念(二)基本成分二、语言处理程序基础(一)编译过程(二)确定的有限自动机和不确定的有限自动机(三)语法分析方法计算机系统知识总结计算机系统知识是计算机科学的基础,涵盖了从硬件到软件的各个方面。本文将对计算机系统知识的第一章内容进行总结,包括计算机
- 【AI论文】PaSa:一款用于全面学术论文搜索的大型语言模型(LLM)代理
东临碣石82
人工智能语言模型自然语言处理
摘要:我们推出了PaSa,这是一款由大型语言模型驱动的高级论文搜索代理。PaSa能够自主做出一系列决策,包括调用搜索工具、阅读论文以及选择相关参考文献,从而最终为复杂的学术查询提供全面且准确的结果。我们使用强化学习方法和一个合成数据集AutoScholarQuery对PaSa进行了优化,该数据集包含3.5万个细粒度的学术查询以及来自顶级人工智能会议出版物的相应论文。此外,我们还开发了RealSch
- AI编程助手ScriptEcho:革新你的编程学习之旅
前端
在当今数字时代,编程技能已成为一项越来越重要的技能,无论是想成为专业的软件工程师,还是想提升自身竞争力,学习编程都至关重要。然而,编程学习之路并非一帆风顺,陡峭的学习曲线和大量的实践项目常常让初学者望而却步。许多人卡在繁琐的配置和基础代码搭建上,难以将精力集中在核心业务逻辑的学习和项目实践中。为了解决这一问题,越来越多的人开始寻找更高效的学习工具,而AI写代码工具ScriptEcho正是其中之一,
- Java编程语言最流行的7个框架介绍
xiaoweids
数据库javajavahibernate数据库
转自:微点阅读https://www.weidianyuedu.com1,SpringMVC在中国有一种说法“生姜仍旧又辛辣”,所以虽然SpringMVC已经发布了十多年,但它仍然强大有力,并且处于领先地位,具有绝对优势。在拥抱完整的MVC框架之后,Spring已经发展并且现在是面向Internet的应用程序的综合Java框架,为软件工程师提供了一个功能强大的工具包,用于Web应用程序开发和安全项
- IT行业中的SSE、SE、BSE、PE、PL各自是什么意思?
GSDjisidi
1024程序员节大数据职场和发展c语言phpjava
在IT行业中,SSE、SE、BSE、PE、PL各自具有特定的含义,它们通常代表不同的职位或角色。以下是对这些缩写的详细解释:SSE(SeniorSoftwareEngineer):含义:高级软件工程师。职责:根据开发进度和任务分配,完成相应模块软件的设计、开发、编程任务;进行程序单元、功能的测试,查出软件存在的缺陷并保证其质量;进行编制项目文档和质量记录的工作;维护软件使之保持可用性和稳定性。SE
- 【强化学习】Unity ML-Agents框架
大雨淅淅
人工智能unity游戏引擎机器学习人工智能深度学习学习
目录一、UnityML-Agents简介二、安装与配置三、基础使用四、关键技术点五、进阶技巧与案例分析六、学习资源七、常见问题与解决方案八、实战项目与案例研究九、未来展望与发展趋势十、结语一、UnityML-Agents简介UnityML-Agents是一个由UnityTechnologies开发的开源项目,它允许开发者利用机器学习技术来训练虚拟环境中的智能代理(Agent)。无论是希望创建更逼真
- 智能体在环境中学习和作出决策
由数入道
人工智能人工智能智能体深度学习
一、概述强化学习是一类通过与环境交互获取反馈并不断优化决策策略的机器学习方法。与监督学习和无监督学习不同,强化学习直接面向序列决策问题,核心目标是找到使智能体(Agent)在环境中获得最大化累积奖励(CumulativeReward)的策略。其理论基础通常以马尔可夫决策过程(MarkovDecisionProcess,MDP)为框架。MDP的五元组通常表示为(S,A,P,R,γ)(S,A,P,R,
- 宇宙规律对可转移量子强化学习架构的启示
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章引言:宇宙规律与量子强化学习架构1.1问题背景宇宙规律是指宇宙中普遍存在的自然规律,如物理学中的万有引力定律、量子力学中的不确定性原理等。这些规律对宇宙的运行和演化起着决定性的作用。随着科技的发展,人们开始意识到这些宇宙规律可能对人工智能领域,尤其是量子强化学习架构的设计和优化有着深远的启示。量子强化学习是一种结合了量子计算和强化学习的新型机器学习方法。它利用量子计算机的优势,在训练和优化模
- 【AI论文】迈向大型推理模型:大型语言模型增强推理综述
东临碣石82
人工智能语言模型自然语言处理
摘要:语言长久以来被视为人类推理不可或缺的工具。大型语言模型(LLM)的突破激发了利用这些模型解决复杂推理任务的浓厚研究兴趣。研究人员已经超越了简单的自回归词元生成,引入了“思维”的概念——即代表推理过程中间步骤的词元序列。这一创新范式使LLM能够模仿复杂的人类推理过程,如树搜索和反思性思维。近期,一种新兴的学习推理趋势采用强化学习(RL)来训练LLM掌握推理过程。这种方法通过试错搜索算法自动生成
- 【强化学习】Mava框架
大雨淅淅
人工智能机器学习算法人工智能学习深度学习
目录一、选择框架二、学习框架基础三、深入框架高级特性四、实践项目五、参考文档和社区资源六、编写测试用例七、学习框架的生态系统八、持续学习和适应九、建立个人项目或工作项目十、反思和总结关于Mava框架的学习,首先需要明确的是,您可能是指Java框架的学习,因为“Mava”并非一个广为人知的特定Java框架名称。在Java开发领域,有多个知名的框架,如Spring、SpringBoot、Hiberna
- 【强化学习】PyTorch-RL框架
大雨淅淅
人工智能pytorch人工智能python深度学习机器学习
目录一、框架简介二、核心功能三、学习环境配置四、学习资源五、实践与应用六、常见问题与解决方案七、深入理解强化学习概念八、构建自己的强化学习环境九、调试与优化十、参与社区与持续学习一、框架简介PyTorch-RL是一个基于PyTorch框架的深度强化学习项目。它充分利用了PyTorch的强大功能,提供了易于使用且高效的深度强化学习算法实现。该项目的主要编程语言是Python,旨在帮助开发者快速实现和
- 深度强化学习(DRL)原理与代码实战案例讲解
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的演进:从符号主义到连接主义人工智能(AI)的发展经历了漫长的历程,从早期的符号主义到如今的连接主义,标志着人工智能从基于规则的推理演变到基于数据的学习。符号主义AI试图通过逻辑和符号系统来模拟人类的思维过程,而连接主义AI则侧重于构建类似于人脑神经网络的结构,通过大量数据进行训练,从而实现智能。1.2强化学习:智能体与环境的互动强化学习(ReinforcementLea
- 【机器学习:三十二、强化学习:理论与应用】
KeyPan
机器学习机器学习机器人人工智能深度学习数据挖掘
1.强化学习概述**强化学习(ReinforcementLearning,RL)**是一种机器学习方法,旨在通过试验与反馈的交互,使智能体(Agent)在动态环境中学习决策策略,以最大化累积奖励(CumulativeReward)。相比监督学习和无监督学习,强化学习更关注长期目标,而非简单地从标签中学习。核心概念智能体(Agent):进行学习和决策的主体。环境(Environment):智能体所在
- java软件工程师简历
极客11
面试与求职java开发语言
java软件工程师简历一姓名:陶**性别:男电话:136-3231****学历:本科邮箱:
[email protected]地址:广州市天河区求职意向java软件工程师掌握技能1.熟练CoreJava编程,有编写注释的习惯;2.能熟练的整合Spring+Struts+Hibernate(SSH)三大开源框架;3.能熟练的应用各种常见的设计模式:工厂模式、单例模式、缺省适配器模式、不变模式、装饰模式、
- 《AI语言模型的关键技术探析:系统提示、评估方法与提示工程》
XianxinMao
人工智能语言模型自然语言处理
文章主要内容摘要1.系统提示(SystemPrompt)定义:用于设置模型行为、角色和工作方式的特殊指令重要性:定义模型行为边界影响输出质量和一致性可将通用模型定制为特定领域助手挑战:技术集成复杂兼容性问题效果难以精确预测2.模型评估方法创新方向:自一致性(Self-Consistency)评估PlanSearch方法强化学习(RL)应用核心特点:多次采样和交叉验证策略空间探索动态权重调整实践价值
- 通义灵码 2.0 全新升级,阿里云正式推出繁星计划
云原生
通义灵码AI程序员的出现,正在颠覆软件工程师的工作方式,从AI辅助编程走向人与AI协同编程。不仅能让工程师专注于更具创新的研发任务,更将实现以前无法想象的创新落地。在今天上午通义灵码2.0发布会上,阿里云云原生应用平台负责人丁宇宣布,通义灵码2.0全新升级,AI程序员重磅发布。通义灵码AI程序员引入了多文件代码修改能力,能对工程内多个代码文件同时进行修改,开发者可以清楚地看到多个文件的生成过程及状
- git操作(bitbucket仓库)
come-昂-
笔记git
在代码远程版本控制和提交过程中需要经常使用git命令,熟练使用git是一个软件工程师必备的技能之一。将主版本代码fork到自己的bitbucket子仓库中克隆到本地利用ssh链接进行克隆,将fork的子仓库克隆到本地。gitclonessh://{$你fork的子bitbucket仓库git链接$}添加远程主仓库虽然我们fork了主仓库的代码到自己的子仓库,但这种fork会无形中造成自己本地的代码
- NLP-语义解析(Text2SQL):技术路线【Seq2Seq、模板槽位填充、中间表达、强化学习、图网络】
u013250861
#自然语言处理人工智能
目前关于NL2SQL技术路线的发展主要包含以下几种:Seq2Seq方法:在深度学习的研究背景下,很多研究人员将Text-to-SQL看作一个类似神经机器翻译的任务,主要采取Seq2Seq的模型框架。基线模型Seq2Seq在加入Attention、Copying等机制后,能够在ATIS、GeoQuery数据集上达到84%的精确匹配,但是在WikiSQL数据集上只能达到23.3%的精确匹配,37.0%
- 通义灵码 2.0 全新升级,阿里云正式推出繁星计划
云原生
通义灵码AI程序员的出现,正在颠覆软件工程师的工作方式,从AI辅助编程走向人与AI协同编程。不仅能让工程师专注于更具创新的研发任务,更将实现以前无法想象的创新落地。在今天上午通义灵码2.0发布会上,阿里云云原生应用平台负责人丁宇宣布,通义灵码2.0全新升级,AI程序员重磅发布。通义灵码AI程序员引入了多文件代码修改能力,能对工程内多个代码文件同时进行修改,开发者可以清楚地看到多个文件的生成过程及状
- 8个顶级物联网认证
雪兽软件
科技前沿物联网
物联网认证可以提供证明,证明学生在物联网方面受过教育,可以用于未来的工作或改进公司如何使用物联网。这里有8个可以帮助员工给雇主留下深刻印象的技巧:1.CCC物联网基础认证:最适合云物联网云认证委员会(CCC)提供了最全面、供应商中立的物联网认证之一。物联网基金会(IoTF)认证涵盖六个学习模块,包括物联网安全和治理、架构和业务用例。根据CCC,理想的参与者包括软件工程师、系统管理员和IT架构师。技
- 数据结构之B树详解(极简)
初眸࿐
小小博客_大大知识b树python算法数据结构
一、引言1)介绍数据结构的重要性在计算机科学中,数据结构是解决问题和优化性能的关键。它们是组织和存储数据的方式,直接影响着我们如何访问、检索和操作数据。一个恰当的数据结构选择可以显著提高算法的效率,降低时间复杂度和空间复杂度。因此,熟练掌握并理解各种数据结构对于软件工程师和计算机科学家来说至关重要。2)B树在数据结构中的地位和应用场景在众多数据结构中,B树以其高效的查找、插入和删除性能,在数据库和
- 【深度强化学习】DQN:深度Q网络算法——从理论讲解到源码解析
视觉萌新、
深度强化学习深度Q网络DQN
【深度强化学习】DQN:深度Q网络算法——从理论讲解到源码解析介绍常用技巧算法步骤DQN源码实现网络结构训练策略DQN算法进阶双深度Q网络(DoubleDQN)竞争深度Q网络(DuelingDQN)优先级经验回放(PER)噪声网络(noisy)本文图片与源码均来自《EasyRL》:https://github.com/datawhalechina/easy-rl介绍 核心思想:训练动作价值函数Q
- 【机器学习】—时序数据分析:机器学习与深度学习在预测、金融、气象等领域的应用
云边有个稻草人
热门文章机器学习数据分析深度学习笔记
云边有个稻草人-CSDN博客目录引言1.时序数据分析基础1.1时序数据的特点1.2时序数据分析的常见方法2.深度学习与时序数据分析2.1深度学习在时序数据分析中的应用2.1.1LSTM(长短期记忆网络)2.2深度学习在金融市场预测中的应用2.2.1股票市场预测2.3深度学习在设备故障检测中的应用3.强化学习与时序数据分析3.1强化学习的基本概念3.2强化学习在金融市场中的应用3.3强化学习在设备故
- 【机器学习】---神经架构搜索(NAS)
Undoom
机器学习Python机器学习架构人工智能python
这里写目录标题引言1.什么是神经架构搜索(NAS)1.1为什么需要NAS?2.NAS的三大组件2.1搜索空间搜索空间设计的考虑因素:2.2搜索策略2.3性能估计3.NAS的主要方法3.1基于强化学习的NAS3.2基于进化算法的NAS3.3基于梯度的NAS4.NAS的应用5.实现一个简单的NAS框架6.总结引言随着深度学习的成功应用,神经网络架构的设计变得越来越复杂。模型的性能不仅依赖于数据和训练方
- npm与npx:有何不同?
npm与npx:有何不同?原文链接:npmvs.npx:What’sthedifference?作者:FimberElemuwa✏️译者:倔强青铜三前言大家好,我是倔强青铜三。是一名热情的软件工程师,我热衷于分享和传播IT技术,致力于通过我的知识和技能推动技术交流与创新,欢迎关注我,微信公众号:倔强青铜三。欢迎点赞、收藏、关注,一键三连!!!什么是npm?npm代表NodePackageManag
- 《C++ 赋能强化学习:Q - learning 算法的实现之路》
c++人工智能深度学习
在当今科技飞速发展的时代,人工智能无疑是最热门的领域之一,而强化学习作为其中的重要分支,正逐渐改变着我们解决复杂问题的方式。Q-learning算法作为强化学习中的经典算法,在众多领域如游戏、机器人控制、资源管理等有着广泛的应用前景。本文将深入探讨如何用C++实现强化学习中的Q-learning算法,带您领略C++在人工智能领域的强大魅力。一、强化学习与Q-learning算法概述强化学习是一种通
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite