爬取冰冰B站千条评论,看看大家说了什么

Python爬取 冰冰 第一条B站视频的千条评论,绘制词云图,看看大家说了什么吧

爬取冰冰B站千条评论,看看大家说了什么_第1张图片
爬取冰冰B站千条评论,看看大家说了什么_第2张图片

文章目录

  • 数据分析
    • 数据预处理
      • 数据描述
      • 删除空值
      • 删除空值
  • 可视化
    • 点赞TOP20
    • 等级分布
    • 性别分布
    • 绘制词云图
  • 数据收集

在这里插入图片描述

数据分析

import pandas as pd
data = pd.read_excel(r"bingbing.xlsx")
data.head()
用户 性别 等级 评论 点赞
0 食贫道 6 [呆][呆][呆]你来了嘿! 158457
1 毕导THU 6 我是冰冰仅有的3个关注之一[tv_doge]我和冰冰贴贴 148439
2 老师好我叫何同学 6 [热词系列_知识增加] 89634
3 央视网快看 保密 6 冰冰来了!我们要失业了吗[doge][doge] 118370
4 厦门大学 保密 5 哇欢迎冰冰!!! 66196

数据预处理

数据描述

data.describe()
等级 点赞
count 1180.000000 1180.000000
mean 4.481356 2200.617797
std 1.041379 10872.524850
min 2.000000 1.000000
25% 4.000000 4.000000
50% 5.000000 9.000000
75% 5.000000 203.750000
max 6.000000 158457.000000

删除空值

data.dropna()
用户 性别 等级 评论 点赞
0 食贫道 6 [呆][呆][呆]你来了嘿! 158457
1 毕导THU 6 我是冰冰仅有的3个关注之一[tv_doge]我和冰冰贴贴 148439
2 老师好我叫何同学 6 [热词系列_知识增加] 89634
3 央视网快看 保密 6 冰冰来了!我们要失业了吗[doge][doge] 118370
4 厦门大学 保密 5 哇欢迎冰冰!!! 66196
... ... ... ... ... ...
1175 黑旗鱼 保密 5 11小时一百万,好快[惊讶] 5
1176 是你的益达哦 6 冰冰粉丝上涨速度:11小时107.3万,平均每小时上涨9.75万,每分钟上涨1625,每秒钟... 5
1177 快乐风男崔斯特 4 军训的时候去了趟厕所,出来忘记是哪个队伍了。看了up的视频才想起来,是三连[doge][滑稽] 5
1178 很认真的大熊 5 我觉得冰冰主持春晚应该问题不大吧。[OK] 5
1179 飞拖鞋呀吼 保密 5 《论一个2级号如何在2020年最后一天成为百大up主》 5

1180 rows × 5 columns

删除空值

data.drop_duplicates()
用户 性别 等级 评论 点赞
0 食贫道 6 [呆][呆][呆]你来了嘿! 158457
1 毕导THU 6 我是冰冰仅有的3个关注之一[tv_doge]我和冰冰贴贴 148439
2 老师好我叫何同学 6 [热词系列_知识增加] 89634
3 央视网快看 保密 6 冰冰来了!我们要失业了吗[doge][doge] 118370
4 厦门大学 保密 5 哇欢迎冰冰!!! 66196
... ... ... ... ... ...
1175 黑旗鱼 保密 5 11小时一百万,好快[惊讶] 5
1176 是你的益达哦 6 冰冰粉丝上涨速度:11小时107.3万,平均每小时上涨9.75万,每分钟上涨1625,每秒钟... 5
1177 快乐风男崔斯特 4 军训的时候去了趟厕所,出来忘记是哪个队伍了。看了up的视频才想起来,是三连[doge][滑稽] 5
1178 很认真的大熊 5 我觉得冰冰主持春晚应该问题不大吧。[OK] 5
1179 飞拖鞋呀吼 保密 5 《论一个2级号如何在2020年最后一天成为百大up主》 5

1179 rows × 5 columns

可视化

点赞TOP20

df1 = data.sort_values(by="点赞",ascending=False).head(20)
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker

c1 = (
    Bar()
    .add_xaxis(df1["评论"].to_list())
    .add_yaxis("点赞数", df1["点赞"].to_list(), color=Faker.rand_color())
    .set_global_opts(
        title_opts=opts.TitleOpts(title="评论热度Top20"),
        datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_="inside")],
    )
    .render_notebook()
)
c1

爬取冰冰B站千条评论,看看大家说了什么_第3张图片

等级分布

data.等级.value_counts().sort_index(ascending=False)
6    165
5    502
4    312
3    138
2     63
Name: 等级, dtype: int64
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

c2 = (
    Pie()
    .add(
        "",
        [list(z) for z in zip([str(i) for i in range(2,7)], [63,138,312,502,165])],
        radius=["40%", "75%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="等级分布"),
        legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render_notebook()
)
c2

爬取冰冰B站千条评论,看看大家说了什么_第4张图片

性别分布

data.性别.value_counts().sort_index(ascending=False)
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.faker import Faker

c4 = (
    Pie()
    .add(
        "",
        [list(z) for z in zip(["男","女","保密"], ["404",'103','673'])],
        radius=["40%", "75%"],
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="性别分布"),
        legend_opts=opts.LegendOpts(orient="vertical", pos_top="15%", pos_left="2%"),
    )
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render_notebook()
    
)
c4

爬取冰冰B站千条评论,看看大家说了什么_第5张图片

绘制词云图

from wordcloud import WordCloud
import jieba
from tkinter import _flatten
from matplotlib.pyplot import imread
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
with open('stoplist.txt', 'r', encoding='utf-8') as f:
    stopWords = f.read()
with open('停用词.txt','r',encoding='utf-8') as t:
    stopWord = t.read()
total = stopWord.split() + stopWords.split()
def my_word_cloud(data=None, stopWords=None, img=None):
    dataCut = data.apply(jieba.lcut)  # 分词
    dataAfter = dataCut.apply(lambda x: [i for i in x if i not in stopWords])  # 去除停用词
    wordFre = pd.Series(_flatten(list(dataAfter))).value_counts()  # 统计词频
    mask = plt.imread(img)
    plt.figure(figsize=(20,20))
    wc  = WordCloud(scale=10,font_path='C:/Windows/Fonts/STXINGKA.TTF',mask=mask,background_color="white",)
    wc.fit_words(wordFre)
    plt.imshow(wc)
    plt.axis('off')
my_word_cloud(data=data["评论"],stopWords=stopWords,img="1.jpeg")

数据收集

通过之前博客的学习,想必大家已经对Python网络爬虫有了了解,希望大家动手实践,这里就不放代码啦,建议参考:

推荐阅读:

  1. 使用xpath爬取数据
  2. jupyter notebook使用
  3. BeautifulSoup爬取豆瓣电影Top250
  4. 一篇文章带你掌握requests模块
  5. Python网络爬虫基础–BeautifulSoup

到这里就结束了,如果对你有帮助你,欢迎点赞关注,你的点赞对我很重要
爬取冰冰B站千条评论,看看大家说了什么_第6张图片

你可能感兴趣的:(爬虫实战,数据分析,python,数据分析,网络爬虫)