Python-数据科学库-matplotlib基础

matplotlib基础

  • matplotlib:最流行的Python底层绘图库
    • 导入matplotlib
    • 设置图片大小
    • 调整x轴或者y轴上的刻度
    • 添加描述信息
    • 绘制散点图
    • 绘制横竖向条形图
    • 绘制横向条形图
    • 多条并列条形图
    • 绘制直方图
    • matplotlib图形样式官方文档

matplotlib:最流行的Python底层绘图库

基本统计图
Python-数据科学库-matplotlib基础_第1张图片

导入matplotlib

from matplotlib import pyplot as plt

以设置24小时温度,每两小时取一点为例

设置图片大小

import matplotlib.pyplot as plt
#figure 图形图标的意思,在这里指的就是我们画的图
#figsize 长宽(元组表示)
#dpi 每英寸像素点个数 清晰程度
fig = plt.figure(figsize=(20,8) ,dpi=80)
x =range (2,26,2)
y = [15,13,14.5,17,20,25,26,26,24,22,18,15]
#按照x为横轴,y为纵轴绘制图片
plt.plot(x,y)
#保存图片 可以保存为svg这种矢量图格式,放大不会有锯齿
plt.savefig("./sig_size.png")
#显示图面
plt.show()

调整x轴或者y轴上的刻度

import matplotlib.pyplot as plt
fig = plt.figure(figsize=(10,5))
x = range(2,26,2)
y = [15,13,14.5,17,20,25,26,26,24,22,18,15]
plt.plot(x,y)
#绘制x轴的刻度 y为plt.yticks()
plt.xticks(x)
#当刻度太密集时候使用列表的步长(间隔取值)来解决,matplotlib会自动帮我们对应plt.show()
plt.xticks(range(2,25))
#由于不可以在range中设置float步长可手动设置列表
xticks_labels=[i/2 for i in range(4,49)]
plt.xticks(xticks_labels)
plt.show()

matplotlib默认不支持中文字符,因为默认的英文字体无法显示汉字
Windows可以通过matplotlib.rc修改

import matplotlib
matplotlib.rc("font",family='MicroSoft YaHei')
#显示10-11点两个小时内每五分钟数据
import matplotlib.pyplot as plt
import random
import matplotlib
matplotlib.rc("font",family='MicroSoft YaHei')
plt.figure(figsize=(20,8))
x=range(120)
random.seed(10)#设置随机种子,让不同时候随机的得到的结果都一样
y = [random.uniform(20,35) for i in range ( 120)]
plt.plot(x,y)
x_ticks = ["10点{}分".format(i) for i in range(60)]
x_ticks += ["11点{}分".format(i) for i in range(60)]
#让列表x中的数据和x_ticks上的数据都传入,最终会在x轴上一一对应的显示出来
#两组数据的长度必须一样,否则不能完全覆盖整个轴
#使用列表的切片,每隔5个选一个数据进行展示
#为了让字符串不会覆盖,使用rotation选项,让字符串顺时针旋转270度显示
plt.xticks(x[ ::5],x_ticks[ ::5],rotation=270)
plt.show()

添加描述信息

plt.xlabel("时间")#x轴标签
plt.ylabel("温度")#y轴标签
plt.title("时间温度表")#图片题目
plt.plot(
	x,#x
	y,#y
	color='r',# 线条颜色
	linestyle='--',#线条风格linewidth=5,#线条粗细
	alpha=0.5#透明度
	label:曲线的标识 区分曲线 要配合plt.legend()使用
}
plt.legend (prop=my_font,loc="best")
#通过prop指定图例的字体
#通过loc指定图例的位置,默认右上角

绘制散点图

不同条件(维度)之间的内在关联关系观察数据的离散聚合程度

# coding=utf-8
from matplotlib import pyplot as plt
import matplotlib
matplotlib.rc("font",family='MicroSoft YaHei')
y_3 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,
21,16,17,20,14,15,15,15,19,21,22,22,22,23]
y_10 =[26,26,28,19,21,17,16,19,18,20,20,19,22,
23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]

x_3 = range(1,32)
x_10 = range(51,82)

#设置图形大小
plt.figure(figsize=(20,8),dpi=80)

#使用scatter方法绘制散点图,和之前绘制折线图的唯一区别
plt.scatter(x_3,y_3,label="3月份")
plt.scatter(x_10,y_10,label="10月份")

#调整x轴的刻度
_x = list(x_3)+list(x_10)
_xtick_labels = ["3月{}日".format(i) for i in x_3]
_xtick_labels += ["10月{}日".format(i-50) for i in x_10]
plt.xticks(_x[::3],_xtick_labels[::3],rotation=45)
#添加图例
plt.legend(loc="upper left")
#添加描述信息
plt.xlabel("时间")
plt.ylabel("温度")
plt.title("标题")
#展示
plt.show()

绘制横竖向条形图

# coding=utf-8
from matplotlib import pyplot as plt
import matplotlib
matplotlib.rc("font",family='MicroSoft YaHei')
a = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士",
"摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归",
"生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战",
"蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊"]
b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,11.61,
11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]
#设置图形大小
plt.figure(figsize=(20,15),dpi=100)
#绘制条形图 只接受可迭代的数字图像 width标识条宽度 默认0.8
plt.bar(range(len(a)),b,width=0.3)
#设置字符串到x轴
plt.xticks(range(len(a)),a,rotation=90)
plt.show()

绘制横向条形图

#绘制横着的条形图
from matplotlib import pyplot as plt
import matplotlib
matplotlib.rc("font",family='MicroSoft YaHei')
a = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士",
"摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归",
"生化危机6:终章","乘风破浪","神偷奶爸3","智取威虎山","大闹天竺","金刚狼3:殊死一战",
"蜘蛛侠:英雄归来","悟空传","银河护卫队2","情圣","新木乃伊",]
b=[56.01,26.94,17.53,16.49,15.45,12.96,11.8,
11.61,11.28,11.12,10.49,10.3,8.75,7.55,7.32,6.99,6.88,6.86,6.58,6.23]
#设置图形大小
plt.figure(figsize=(20,8),dpi=80)
#绘制横向条形图
plt.barh(range(len(a)),b,height=0.3,color="orange")
#设置字符串到y轴
plt.yticks(range(len(a)),a)
## 绘制网格
plt.grid(alpha=0.3)
plt.show()

多条并列条形图

# coding=utf-8
from matplotlib import pyplot as plt
import matplotlib
matplotlib.rc("font",family='MicroSoft YaHei')
a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362]
bar_width = 0.2
x_14 = list(range(len(a)))
x_15 = [i+bar_width for i in x_14]
x_16 = [i+bar_width*2 for i in x_14]
#设置图形大小
plt.figure(figsize=(20,8),dpi=80)
plt.bar(x_14,b_14,width=bar_width,label="9月14日")
plt.bar(x_15,b_15,width=bar_width,label="9月15日")
plt.bar(x_16,b_16,width=bar_width,label="9月16日")
#设置图例
plt.legend()
#设置x轴的刻度
plt.xticks(x_15,a)
plt.show()

绘制直方图

直方图用来数量统计和频率统计

plt.hist(a,num_bins,normed=1)
a:数据
num_bins:组数(数字),可也可以传入一个列表,长度为组数,值为分组依据,当组距不均匀的时候使用
normed : bool是否绘制频率分布直方图,默认为频数直方图
# coding=utf-8
from matplotlib import pyplot as plt
import matplotlib
matplotlib.rc("font",family='MicroSoft YaHei')
a=[131,  98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 
131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124, 101, 110,150116, 117, 110, 128, 128, 115,  99, 136, 126, 134,  95, 138, 117,133, 
111,78, 132, 124, 113, 150, 110, 117,  86,  95, 144, 105, 126, 130,
126, 130, 126, 116, 123, 106, 112, 138, 123,  86, 101,  99, 136,123,
117, 119, 105, 137, 123, 128, 125, 104, 109, 134, 125, 127,105, 120, 
107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114,105, 115, 132, 
145, 119, 121, 112, 139, 125, 138, 109, 132, 134,156, 106, 117, 127, 
144, 139, 139, 119, 140,  83, 110, 102,123,107, 143, 115, 136, 118, 
139, 123, 112, 118, 125, 109, 119, 133,112, 114, 122, 109, 106, 123, 
116, 131, 127, 115, 118, 112, 135,115, 146, 137, 116, 103, 144,  83,
123, 111, 110, 111, 100, 154,136, 100, 118, 119, 133, 134, 106, 129, 
126, 110, 111, 109, 141,120, 117, 106, 149, 122, 122, 110, 118, 127, 
121, 114, 125, 126,114, 140, 103, 130, 141, 117, 106, 114, 121, 114,
133, 137,  92,121, 112, 146,  97, 137, 105,  98, 117, 112,  81,  97, 
139, 113,134, 106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 
110,105, 129, 137, 112, 120, 113, 133, 112,  83,  94, 146, 133, 101,
131, 116, 111,  84, 137, 115, 122, 106, 144, 109, 123, 116, 111,111]
#计算组数
d = 3  #组距 一组的数值跨度
num_bins = (max(a)-min(a))//d
print(max(a),min(a),max(a)-min(a))
print(num_bins)
#设置图形的大小
plt.figure(figsize=(20,8),dpi=80)
plt.hist(a,num_bins,normed=True)
#设置x轴的刻度
plt.xticks(range(min(a),max(a)+d,d))
plt.grid()
plt.show()

统计后的数据无法用hist绘制直方图 但可以绘制条形图模拟直方图

# coding=utf-8
from matplotlib import pyplot as plt
interval = [0,5,10,15,20,25,30,35,40,45,60,90]
width = [5,5,5,5,5,5,5,5,5,15,30,60]
quantity = [836,2737,3723,3926,3596,1438,3273,642,824,613,215,47]#已统计频数
print(len(interval),len(width),len(quantity))
#设置图形大小
plt.figure(figsize=(20,8),dpi=80)
plt.bar(range(12),quantity,width=1)
#设置x轴的刻度
_x = [i-0.5 for i in range(13)]
_xtick_labels =  interval+[150]
plt.xticks(_x,_xtick_labels)
plt.grid(alpha=0.4)
plt.show()

matplotlib图形样式官方文档

matplotlib图形样式官方文档

你可能感兴趣的:(笔记,python,数据分析)