- TDengine DECIMAL 数据类型使用手册
TDengine (老段)
TDengine产品设计tdengine大数据时序数据库数据库物联网涛思数据iot
TDengineDECIMAL数据类型使用手册1.概述DECIMAL数据类型用来存储高精度数值数据,在其他数据库也被称为NUMERIC。DECIMAL数据类型的基本运算返回的是精确结果,适用于需要精确计算的场景,如金融数据、货币计算等。相比于浮点数类型(FLOAT、DOUBLE),DECIMAL类型:优势:保证精确计算,避免浮点数舍入误差劣势:计算性能相对较低2.基本概念2.1核心术语DECIMA
- 陈强《计量经济学及Stata应用》学习笔记——持续更新
WangSoooCute
学习笔记
1导论1.1什么是计量经济学econometrics几种关系:相关关系、因果关系、逆向因果关系reversecausality、双向因果关系被解释变量dependentvariable解释变量explanatoryvariable=regressor=自变量independentvariable=协变量covariateunobservable的误差项errorterm=随机扰动项stochast
- 两步移动搜索法(2SFCA)python
我在北京coding
pythonpython开发语言
实现两步移动搜索法(Two-StepFloatingCatchmentAreaMethod,2SFCA)是一种广泛应用于地理信息系统(GIS)领域的方法,用于评估设施的空间可达性。以下是基于Python和GeoPandas的一种实现方式。准备工作为了实现2SFCA方法,需要准备以下数据集:供给点:表示服务提供方的位置及其服务能力。需求点:表示潜在使用者的位置及其需求量。距离矩阵:描述供给点与需求点
- 反向传播神经网络极简入门
自信哥
单个神经元神经网络是多个“神经元”(感知机)的带权级联,神经网络算法可以提供非线性的复杂模型,它有两个参数:权值矩阵{Wl}和偏置向量{bl},不同于感知机的单一向量形式,{Wl}是复数个矩阵,{bl}是复数个向量,其中的元素分别属于单个层,而每个层的组成单元,就是神经元。神经元神经网络是由多个“神经元”(感知机)组成的,每个神经元图示如下:这其实就是一个单层感知机,其输入是由和+1组成的向量,其
- 银行金融的数据大集中和灾难备份技术
dsg_gulibin
【业内灾备技术/方案】金融oracle数据备份存储网络服务器
9.1数据大集中技术数据大集中是当前银行信息化的热点之一。本节将叙述数据大集中的含义、必要性及大集中的三种模式,最后介绍国内银行数据大集中的成功案例。9.1.1数据大集中的含义银行系统中的数据“大集中”是一种通俗、形象的说法,旨在与过去的“数据分散”和“有限集中”的模式相区别,实际上,银行数据大集中可以的内涵可以用八个字来概括,即:数据集中、系统整合。集中是数据的“相对”集中,不是绝对集中;整合是
- ShaderGraph节点解析(124):绕轴旋转节点(Rotate About Axis Node)详解
小李也疯狂
#unityShaderGraphUnity
目录一、节点功能概述二、端口详解控制选项三、技术原理解析3.1数学基础:罗德里格斯旋转公式3.2旋转矩阵构造3.3生成代码解析1.弧度模式(Radians)2.度模式(Degrees)3.4旋转方向:右手定则四、应用场景与实战案例4.1角色骨骼旋转(动画驱动)场景:实现角色手臂绕肱骨(上臂骨)旋转,模拟弯曲动作4.2相机环绕效果(第三人称视角)场景:让相机绕目标物体(如角色)的Y轴旋转,实现环绕观
- 告别合规“人海战术”,奇富科技Lumo AI合规助手让效率狂飙20倍!
CSDN资讯
人工智能科技LumoAI
6月20日,国家金融监督管理总局发布《商业银行市场风险管理办法》,银行业随即掀起了一场监管解读与内部宣导的热潮,对照新规,企业内部逐一梳理,再逐一落实。面对不断更新的政策要求和堆积如山的协议审查,传统人工筛查方式显得力不从心,效率低下且漏洞百出,企业合规人力匮乏,全流程合规SOP执行难、合规自查覆盖率低、员工与客户异常行为发现滞后等问题如同高悬的“达摩克利斯之剑”,让机构们喘不过气来。奇富科技精准
- 【机器学习笔记Ⅰ】7 向量化
巴伦是只猫
机器学习机器学习笔记人工智能
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
- 2019年架构师系列教程:高并发Netty实战打造百万连接架构
不教书的塞涅卡
本文还有配套的精品资源,点击获取简介:本课程面向高级IT专业人士,旨在教授如何利用Netty框架设计和实现能够处理高并发连接的服务器架构。Netty是一个高性能、异步事件驱动的Java网络应用程序框架。课程将提升学员在系统架构设计和性能优化方面的技能,应对高并发场景挑战,特别是在金融、游戏、物联网等领域。1.Netty框架基础概念介绍Netty是一个高性能的网络应用框架,专为快速开发可维护的高性能
- Android PNG/JPG图ARGB_8888/RGB_565解码形成Bitmap在物理内存占用大小的简单计算
AndroidPNG/JPG图ARGB_8888/RGB_565解码形成Bitmap在物理内存占用大小的简单计算Android的Bitmap是一个用于表示图像数据的核心类,代表一张图片在内存中的存储,Bitmap存储了图像的像素信息数据。Bitmap把图像理解为像素点组成的二维矩阵,每个像素点存储对应位置的一系列ARGB值(透明度+红绿蓝通道)。Bitmap在内存中占用大小的关键计算公式:内存
- 【Note】《Kafka: The Definitive Guide》第6章:Kafka 的可靠数据投递机制,理解消息系统中的交付语义
CodeWithMe
中间件读书笔记kafka分布式
《Kafka:TheDefinitiveGuide》第6章:Kafka的可靠数据投递机制,理解消息系统中的交付语义在构建分布式系统时,数据是否成功送达?是否会丢失?是否会重复?这些都是架构师必须面对的核心问题。Kafka被广泛应用于金融、监控、日志、交易、IoT等对可靠性要求极高的场景,那么它是如何保障消息交付可靠性的?本章将深入解析Kafka的消息投递语义、失败处理机制、幂等性与事务支持,从而理
- 条件概率:不确定性决策的基石
大千AI助手
人工智能Python#OTHER决策树算法机器学习人工智能条件概率概率论
条件概率是概率论中的核心概念,用于描述在已知某一事件发生的条件下,另一事件发生的概率。它量化了事件之间的关联性,是贝叶斯推理、统计建模和机器学习的基础。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、定义与公式设(A)和(B)是两个随机事件,且(P(B)>0):条件概率(P(A\midB))表示
- 区间动态规划
Luther coder
动态规划算法
目录一.区间dp简介二.模板代码三.典型例题(1)P4170[CQOI2007]涂色-洛谷三.总结一.区间dp简介区间dp:就是对于区间的一种动态规划,它将问题划分为若干个子区间,并通过定义状态和状态转移方程来求解每个子区间的最优解,最终得到整个区间的最优解。对于某个区间,它的合并方式可能有很多种,我们需要去枚举所有的方式,通常是去枚举区间的分割点,找到最优的方式(一般是找最少消耗)。例如:对于区
- 使用 Python 在 Word 文档中插入数学公式 - 详解
nuclear2011
PythonWordpython插入数学公式到Word文档添加数学表达式到Word文档给Word文档添加数学公式MathML数学公式LaTeX数学公式
目录为什么在Word文档中插入数学公式?环境准备如何使用Python在Word文档中插入数学公式方法一:使用EQ域插入数学公式方法二:通过LaTeX和MathML插入复杂数学公式总结在金融、工程、教育和科研等专业领域的文档中常常需要包含复杂且精确的数学公式。将数学公式直接嵌入文档中,不仅能够提升文档的专业水准,还能实现公式的自动更新和动态计算,从而有效提升工作效率和内容的准确性。本文将介绍如何使用
- python实现多元线性回归算法 (附完整源码)
源代码大师
python算法完整教程算法python线性回归
python实现多元线性回归算法1.使用正规方程实现多元线性回归代码说明运行结果示例2.使用梯度下降法实现多元线性回归代码说明运行结果示例进一步优化与注意事项下面是使用Python从头实现多元线性回归算法的完整源码。这个实现利用了numpy进行矩阵运算,并展示了如何训练模型、进行预测以及评估模型性能。为了更全面,代码中还包含了一个使用梯度下降法(GradientDescent)优化参数的实现。多元
- 贪心算法 greedy algorithm
yuebo_zhao
算法c++数据结构
贪心算法greedyalgorithm」是一种常见的解决优化问题的算法,其基本思想是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部最优的决策,以期获得全局最优解。贪心算法简洁且高效,在许多实际问题中有着广泛的应用。贪心算法和动态规划都常用于解决优化问题。它们之间存在一些相似之处,比如都依赖最优子结构性质,但工作原理不同。动态规划会根据之前阶段的所有决策来考虑当前决策,并使用过去
- 计算三维空间中AOA定位的 CRLB(Cramér–Rao 下界,克拉美罗下界)公式与MATLAB例程
MATLAB卡尔曼
MATLAB定位程序与详解matlab机器学习定位导航
文章目录适用条件✅符号定义✅CRLB计算基本框架1.方向向量定义2.雅可比矩阵(Jacobian)3.Fisher信息矩阵(FIM)4.Cramér–RaoLowerBound✅例程中文注释版`aoa_crlb_3d_demo.m`✅运行输出结果在三维空间中,利用AOA(AngleofArrival,到达角度)测量信息进行目标定位时,CRLB(Cramér–RaoLowerBound)表示该测量系
- 创客匠人深度剖析:家庭教育赛道创始人 IP 打造与知识变现的破局之道
创小匠
tcp/ip网络协议网络
在知识付费领域,家庭教育赛道的竞争日益激烈,如何从0-1打造创始人IP并实现高效拓客,成为创业者的核心难题。创客匠人服务的慈航德教育创始人陈向杰老师,通过视频号运营、产品矩阵设计与社群生态构建,实现单月拓客1.6万+,其背后的IP打造逻辑为行业提供了可复用的方法论。从慈航德教育的案例来看,创始人IP的定位需要锚定赛道本质需求。陈向杰老师将“慈、航、德”的品牌理念融入IP人设,以“帮助孩子减负”的教
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- 雪球结构定价与风险深度分析
wh3933
一、雪球结构简介雪球(Snowball)结构属于路径依赖型奇异衍生品,其结构相对复杂,但自2019年开始,雪球这种非保本型收益凭证受到市场上越来越多的关注,各类金融机构纷纷以不同角色参与其中,雪球在市场中的影响也逐渐增强。雪球型收益凭证实际是卖出了敲入结构的看跌期权,只要标的不发生大幅下跌,持有该收益凭证的时间越长,获得票息收益越多,类似于滚雪球一样,只要地面不出现非常大的坑洼,雪球就会越滚越大。
- 【归纳】C++入门算法模版总结(超级详细!!!)(包括高精度,排序,枚举,二分,搜索,动态规划等)
0.前言本文针对有一定算法基础的选手制作,收录了大部分算法的模板,详细解说可以点进去我提供的链接了解。或者进入我的主页给一点支持!本人也是一名新手,如果这篇文章有不严谨的地方或者不懂的地方可以在评论区留言,我会为你们一一解答的。【归纳】C++入门算法模版总结(包括高精度,排序,枚举,二分,搜索,动态规划等)(超级详细!!!)0.前言1.高精度1.1.单独实现1.1.1.高精度加法1.1.2.高精度
- 向量运算、矩阵运算、线性变换相关运算
超龄超能程序猿
机器学习矩阵线性代数机器学习
一、向量核心运算1.向量加法与数乘(线性组合基础)定义:加法:若a=(a1,a2,…,an),b=(b1,b2,…,bn),则a+b=(a1+b1,a2+b2,…,an+bn)。数乘:若k为标量,则ka=(ka1,ka2,…,kan)。性质:满足交换律、结合律,构成向量空间的基本运算。应用:向量线性组合(如基向量表示任意向量)、物理中力的合成与分解。2.点积(内积,DotProduct)定义:a⋅
- 最长回文子串-leetCode-005
针对这个问题,共有四种解法,分别是暴力法,中心拓展法,动态规划,Manacher算法解法一:暴力法思路:枚举所有可能的子串,然后判断每个子串是否是回文串,最后找出最长的回文子串。classSolution{publicStringlongestPalindrome(Strings){intn=s.length();if(n==0){return"";}StringmaxPalindrome=s.s
- 2025年- H93-Lc201-- 64.最小路径和(多维动态规划)--Java版
豆包版:每天进步一点点
javaleetcode动态规划java算法
1.题目描述2.思路(1)dp含义:dp[i][j]以i-1的word1字符串和j-1的word2字符串的最少操作次数。(2)递推公式:1)word1[i-1]和word2[j-1]相等的情况此时的字符串是不需要操作,i-2和j-2的操作次数与(i-1和j-1)的操作次数相等dp[i][j]=dp[i-1][j-1]2)word1[i-1]和word2[i-1]不相等的情况删除和添加是互逆的,操作
- 深度学习实验:GPU加速,突破性能瓶颈
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
深度学习实验:GPU加速,突破性能瓶颈1.背景介绍随着深度学习模型变得越来越复杂和庞大,传统的CPU已经无法满足训练和推理的计算需求。GPU凭借其强大的并行计算能力和专门为矩阵运算优化的架构,成为了深度学习领域的核心加速器。本文将探讨如何利用GPU加速深度学习实验,突破性能瓶颈,提高模型训练和推理的效率。2.核心概念与联系2.1GPU架构GPU(图形处理器)最初是为了加速图形渲染而设计的,但由于其
- 算法理论知识
Victor Zhong
AI框架算法
算法理论知识排序二分查找冒泡排序插入排序选择排序快速排序堆排序希尔排序归并排序基数排序动态规划排序二分查找start=0end=len(list)mid=(start+end)//2冒泡排序每次都是相邻元素两两比较并交换位置。插入排序就好比扑克牌(分左边排好序,右边待排序),每次都是从右边拿一张牌去左边排好序的序列中找插入的位置。选择排序从后面找最小的和前面那个元素进行交换快速排序从中找一个元素作
- NV133NV137美光固态闪存NV147NV148
18922804861
数据库
NV133NV137美光固态闪存NV147NV148美光固态闪存技术矩阵深度解析:NV133至NV148的全面较量一、性能参数:数据高速公路的“车速”比拼读写速度:从“乡间小道”到“高铁动脉”美光NV系列固态闪存的核心竞争力在于其读写速度的跃升。以NV158为例,其顺序读取速度可达数千MB/s,加载大型文件(如4K视频、3D建模文件)时,体验如同“在数据高速路上一路绿灯飞驰”。相比之下,传统机械硬
- 2025年- H90-Lc198-- 1143. 最长公共子序列(多维动态规划)--Java版
1.题目描述2.思路每个格子dp[i][j]都表示:从字符串开头开始,分别取前i个字符和前j个字符之间的最优子结构(最长公共子序列的长度)最终的dp[m][n]表示的就是:“从头到尾整个text1和text2的最长公共子序列长度”。答:不需要,因为我们构造dp[i][j]的时候,就是按“从左上到右下”的顺序,逐步比较两个字符串的公共子序列长度。3.代码实现classSolution{publici
- Open3D 点到面的ICP配准算法
AtlasCloud
python点云数据处理算法人工智能python矩阵numpy
目录一、算法原理1、算法概述2、点到平面ICP精配准3、参考文献二、主要函数三、代码实现四、结果展示1、初始位置2、配准结果一、算法原理1、算法概述 点到平面度量通常使用标准非线性最小二乘法来求解,例如Levenberg-Marquardt。点到平面ICP算法的每次迭代通常比点到点算法慢,但收敛速度明显更快。两个点云之间的相对旋转小于30°,在旋转矩阵中用θ替换sinθ,用1替换cosθ实现用线
- 线性代数在图像处理中的应用 --- 纳尼? 2D的高斯核可以通过1D的高斯核直接生成?(秩为1的矩阵)
松下J27
LinearAlgebra线性代数图像处理人工智能
二维高斯核,Rank秩等于一的矩阵之前,我在学习图像处理的时候,会经常用到Gaussianblur,也就是二维高斯低通滤波。当时用的都是Matlab中,现成的图像处理库。只需要输入sigma和kernelsize这些参数就行了,完全不需要考虑高斯核中的每个点长啥样。虽然教科书里面也会有一些配图,例如:直到后来,我学习高斯图像金字塔的时候发现,在别人的代码里面,他在生成二维高斯核的时候,并不是直接写
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息