通过查询前人的博客,发现必应可通过url按关键字查找图片:
https://www.bing.com/images/async?q=查询关键字&first=图片编号&count=图片数量&mmasync=1
基于该url,我写了一个爬虫类,实现了按关键字下载固定数量的必应高清图片。调用时只需要一条python语句即可(由于使用了线程池并发请求图片,所以下载速度较快,一分钟300张高清图片没问题):
# 关键词:电脑壁纸
# 需要的图片数量:100
# 图片保存路径:'E:\images'
BingImagesSpider('电脑美女壁纸', 100, 'E:\images').run()
爬虫类的源码如下:
import requests
from lxml import etree
import os
from multiprocessing.dummy import Pool
import json
from time import time
# 作用:按关键字、图片数量爬取必应图片,存放到指定路径。
# 使用方法:只需运行一条命令 BingImagesSpider('电脑美女壁纸', 200, 'E:\images').run()
class BingImagesSpider:
thread_amount = 1000 # 线程池数量,线程池用于多IO请求,减少总的http请求时间
per_page_images = 30 # 每页必应请求的图片数
count = 0 # 图片计数
success_count = 0
# 忽略图片标签的一些字符
ignore_chars = ['|', '.', ',', ',', '', '', '/', '@', ':', ':', ';', ';', '[', ']', '+']
# 允许的图片类型
image_types = ['bmp', 'jpg', 'png', 'tif', 'gif', 'pcx', 'tga', 'exif', 'fpx', 'svg', 'psd', 'cdr', 'pcd', 'dxf', 'ufo', 'eps', 'ai', 'raw', 'WMF', 'webp']
# 请求头
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.83 Safari/537.36'}
# 必应图片 url
bing_image_url_pattern = 'https://www.bing.com/images/async?q={}&first={}&count={}&mmasync=1'
def __init__(self, keyword, amount, path='./'):
# keyword: 需爬取的关键字
# amount: 需爬取的数量
# path: 图片存放路径
self.keyword = keyword
self.amount = amount
self.path = path
self.thread_pool = Pool(self.thread_amount)
def __del__(self):
self.thread_pool.close()
self.thread_pool.join()
# 作用:从必应请求图片
def request_homepage(self, url):
# url: 必应图片页的 url
return requests.get(url, headers=self.headers)
# 作用:解析必应网页,得到所有图片的信息,封装到列表中返回
# 每个图片的信息以字典对象存储,字典的键包括 image_title, image_type, image_md5, image_url
def parse_homepage_response(self, response):
# response: 必应网站的响应
# 获取各图片信息所在的json格式字符串 m
tree = etree.HTML(response.text)
m_list = tree.xpath('//*[@class="imgpt"]/a/@m')
# 对每个图片分别处理
info_list = []
for m in m_list:
dic = json.loads(m)
# 去除一些文件名中不允许的字符
image_title = dic['t']
for char in self.ignore_chars:
image_title = image_title.replace(char, ' ')
image_title = image_title.strip()
# 有些图片的信息中不包含图片格式,该情况将图片设置为 jpg 格式
image_type = dic['murl'].split('.')[-1]
if image_type not in self.image_types:
image_type = 'jpg'
# 将每个图片的信息存为字典格式
info = dict()
info['image_title'] = image_title
info['image_type'] = image_type
info['image_md5'] = dic['md5']
info['image_url'] = dic['murl']
info_list.append(info)
return info_list
# 请求具体图片,保存到初始化时指定的路径
def request_and_save_image(self, info):
# info: 每个图片的信息,以字典对象存储。字典的键包括 image_title, image_type, image_md5, image_url
filename = '{} {}.{}'.format(self.count, info['image_title'], info['image_type'])
filepath = os.path.join(self.path, filename)
try:
# 请求图片
response = requests.get(info['image_url'], headers=self.headers, timeout=1.5)
# 保存图片
with open(filepath, 'wb') as fp:
fp.write(response.content)
# 打印日志
self.count += 1
self.success_count += 1
print('{}: saving {} done.'.format(self.count, filepath))
except requests.exceptions.RequestException as e:
self.count += 1
print('{}: saving {}failed. url: {}'.format(self.count, filepath, info['image_url']))
print('\t tip:', e)
# 作用:图片信息的列表去重,去除重复的图片信息
def deduplication(self, info_list):
result = []
# 用图片的 md5 做为唯一标识符
md5_set = set()
for info in info_list:
if info['image_md5'] not in md5_set:
result.append(info)
md5_set.add(info['image_md5'])
return result
# 作用:运行爬虫,爬取图片
def run(self):
# 创建用于保存图片的目录
if not os.path.exists(self.path):
os.mkdir(self.path)
# 根据关键词和需要的图片数量,生成将爬取的必应图片网页列表
homepage_urls = []
for i in range(int(self.amount/self.per_page_images * 1.5) + 1): # 由于有些图片会重复,故先请求1.5倍图片,豁免
url = self.bing_image_url_pattern.format(self.keyword, i*self.per_page_images, self.per_page_images)
homepage_urls.append(url)
print('homepage_urls len {}'.format(len(homepage_urls)))
# 通过线程池请求所有必应图片网页
homepage_responses = self.thread_pool.map(self.request_homepage, homepage_urls)
# 从必应网页解析所有图片的信息,每个图片包括 image_title, image_type, image_md5, image_url 等信息。
info_list = []
for response in homepage_responses:
result = self.parse_homepage_response(response)
info_list += result
print('info amount before deduplication', len(info_list))
# 删除重复的图片,避免重复下载
info_list = self.deduplication(info_list)
print('info amount after deduplication', len(info_list))
info_list = info_list[ : self.amount]
print('info amount after split', len(info_list))
# 下载所有图片,并保存
self.thread_pool.map(self.request_and_save_image, info_list)
print('all done. {} successfully downloaded, {} failed.'.format(self.success_count, self.count - self.success_count))
if __name__ == '__main__':
# 关键词:电脑壁纸
# 需要的图片数量:100
# 图片保存路径:'E:\images'
start = time()
BingImagesSpider('电脑壁纸', 100, 'E:\images').run()
print(time() - start)