Prometheus+Grafana全方位监控Kubernetes集群资源利用率

Prometheus+Grafana全方位监控Kubernetes集群

文章目录

  • Prometheus+Grafana全方位监控Kubernetes集群
    • 1.k8s监控指标
    • 2.k8s基础环境准备
      • 2.1.环境准备
      • 2.2.部署nfs作为prometheus存储
      • 2.3.获取prometheus yaml文件
      • 2.4.创建命名空间prometheus
    • 3.在k8s中部署prometheus
      • 3.1.prometheus-yaml准备
      • 3.2.创建rbac资源
      • 3.3.创建configmap资源
      • 3.4.创建statefulset资源
        • 3.4.1.改造statefulst资源支持静态pv
        • 3.4.2.创建statefulset资源
      • 3.5.创建service资源
        • 3.5.1.修改service资源支持nodeport
        • 3.5.2.创建service资源
      • 3.6.查看创建的prometheus所有资源类型
      • 3.7.访问prometheus
      • 3.8.prometheus配置文件解释
        • 3.8.1.进入prometheus容器
        • 3.8.2.配置文件解释
      • 3.9.k8s metrics页面
    • 4.在k8s中部署grafana
      • 4.1.编写granfana-pv-pvc资源
      • 4.2.编写granfana-statefulset资源
      • 4.3.编写granfana-svc资源
      • 4.4.k8s创建grafana
      • 4.5.查看资源运行状态
      • 4.6.登陆grafana
      • 4.7.导入k8s资源监控pod资源模板
      • 4.8.解决模板表达式问题无法展现所有pod
        • 4.8.1.问题描述
        • 4.8.2.问题解决
    • 5.监控k8s node节点
      • 5.1.编写一键部署node_exporter脚本
      • 5.2.对k8s的node进行执行node_exporter脚本
      • 5.3.在prometheus的configmap资源中增加node节点配置
      • 5.4.导入k8s node主机监控模板
    • 6.k8s使用kube-state-metrics-监控资源状态
      • 6.1.创建rbac资源
      • 6.2.创建deployment资源
      • 6.3.创建service资源
      • 6.4.资源准备就绪
      • 6.5.在prometheus查看是否获取监控指标
      • 6.6.导入k8s 资源状态模板
    • 7.在k8s中部署alertmanager实现告警系统
      • 7.1.创建alertmanager-pv-pvc资源
      • 7.2.创建alertmanager-cm资源增加微信告警配置
      • 7.3.创建alertmanager-deployment资源
      • 7.4.创建alertmanager-service资源
      • 7.5查看alertmanager所有资源
      • 7.6.访问alertmanager
    • 8.配置alertmanager实现k8s告警系统
      • 8.1.在NFS上准备两个告警规则文件
      • 8.2.编写rules告警规则的pv、pvcyaml文件
      • 8.3.修改prometheus的statefulset资源集成rules
      • 8.4.更新prometheus-statefulset资源
      • 8.5.修改prometheus-configmap资源配置alertmanager地址
      • 8.5.查看页面是否增加告警规则
      • 8.6.模拟node主机宕机并查看微信告警内容

1.k8s监控指标

kubernetes本身监控

  • Node资源利用率
  • Node数量
  • Pods数量
  • 资源对象状态

Pod监控

  • pod数量
  • 容器资源利用率
  • 应用程序

实现思路

  • pod性能
    • 使用cadvisor进行实现,监控容器的CPU、内存利用率
  • Node性能
    • 使用node-exporter实现,主要监控节点CPU、内存利用率
  • K8S资源对象
    • 使用kube-state-metrics实现,主要用于监控pod、deployment、service

k8s服务发现参考文档: https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config

本文将会实现k8s全方位监控,并配合grafana展示k8s资源对象的使用状态,以及配合alertmanager告警

2.k8s基础环境准备

2.1.环境准备

IP 角色
192.168.16.106 k8s-master
192.168.16.104 k8s-node1
192.168.16.107 k8s-node2
192.168.16.105 nfs

2.2.部署nfs作为prometheus存储

[root@nfs ~]# mkdir /data/prometheus

[root@nfs ~]# yum -y install nfs-utils

[root@nfs ~]# vim /etc/exports
/data/prometheus   192.168.16.0/24(rw,sync,no_root_squash)

[root@nfs ~]# systemctl restart nfs

[root@nfs ~]# showmount -e
Export list for nfs:
/data/prometheus 192.168.16.0/24

[root@nfs ~]# chomd -R 777 /data

2.3.获取prometheus yaml文件

在这里下载

https://github.com/kubernetes/kubernetes/tree/release-1.16/cluster/addons/prometheus

直接克隆完整目录也可以

https://github.com/kubernetes/kubernetes.git

已将所有yaml进行了修改,可以参考本人写的yaml

本人yaml链接:链接:https://pan.baidu.com/s/1LN8AzLFo2JIvYX0nmgq0EQ
提取码:u4t0
复制这段内容后打开百度网盘手机App,操作更方便哦

prometheus在github的k8s目录中master分支已经找不到了,可以在release-1.16这里找到

1.拉取prometheus yaml文件
[root@k8s-master ~/k8s]# git clone https://github.com/kubernetes/kubernetes.git

2.将prometheus yaml文件复制到其他目录
[root@k8s-master ~/k8s]# cp -rp kubernetes/cluster/addons/prometheus/ . 

本人的yaml文件

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第1张图片

官方yaml文件

在这里插入图片描述

文件说明

主要分为四部分:prometheus部署、alertmanager部署、kube-state-metrics部署、node-exporter部署

文件名 作用
alertmanager-configmap.yaml alertmanager配置集合的yaml文件
alertmanager-deployment.yaml alertmanager创建pod的yaml文件
alertmanager-pvc.yaml alertmanager挂载存储卷的yaml文件
alertmanager-service.yaml alertmanager对外暴露端口的yaml文件
grafana_pv_pvc.yaml grafana挂载存储卷的yaml文件
grafana_statefulset.yaml grafana发布pod的yaml文件,采用statefulset资源
grafana_svc.yaml grafana对外暴露端口的yaml文件
install_node_exportes.sh 批量在node节点安装node_exporter的脚本
k8s_time.yaml k8s同步宿主机时间的yaml文件
kube-state-metrics-deployment.yaml k8s采集资源状态指标程序的yaml文件
kube-state-metrics-rbac.yaml 8s采集程序授权的yaml文件
kube-state-metrics-service.yaml k8s采集程序对外暴露的yaml文件
node-exporter-ds.yml node_exporter部署的yaml文件
node-exporter-service.yaml node_exporter对外暴露的yaml文件
prometheus-configmap.yaml prometheus的配置文件集
prometheus-pv-pvc.yaml prometheus挂载存储的yaml文件
prometheus-rbac.yaml prometheus授权访问api的yaml文件
prometheus-rules-pvc.yaml prometheus告警规则存储卷的yaml文件
prometheus-rules.yaml prometheus将rule做成cm资源的yaml文件
prometheus-service.yaml prometheus对外提供访问的yaml文件
prometheus-statefulset-static-pv.yaml prometheus程序部署的yaml文件

2.4.创建命名空间prometheus

创建一个ns为prometheus,将除了kube-state-metrics外的yaml中的namespace修改为prometheus

1.创建ns
[root@k8s-master ~/k8s/prometheus]# kubectl create namespace prometheus
namespace/prometheus created

2.修改
用vim打开输入以下命令
:%s/namespace: kube-system/namespace: prometheus/g

3.在k8s中部署prometheus

3.1.prometheus-yaml准备

主要用到以下几个yaml
[root@k8s-master ~/k8s/prometheus]# ls prometheus-*
prometheus-configmap.yaml  prometheus-rbac.yaml  prometheus-service.yaml  prometheus-statefulset.yaml

创建顺序

先创建prometheus-rbac.yaml

在创建prometheus-configmap.yaml

在创建prometheus-statefulset.yaml

最后创建prometheus-service.yaml

3.2.创建rbac资源

[root@k8s-master ~/k8s/prometheus]# kubectl create -f prometheus-rbac.yaml 
serviceaccount/prometheus created
clusterrole.rbac.authorization.k8s.io/prometheus created
clusterrolebinding.rbac.authorization.k8s.io/prometheus created

3.3.创建configmap资源

[root@k8s-master ~/k8s/prometheus]# kubectl create -f prometheus-configmap.yaml 
configmap/prometheus-config created

3.4.创建statefulset资源

github上的statefulset资源使用的是storageclasee动态创建pv,由于不会使用storageclass,因此将statefulset资源进行改造,使用静态pv做存储

3.4.1.改造statefulst资源支持静态pv

改造思路:在yaml中增加pv、pvc的配置,在将原来的storageclass配置项删除,在120行的volume中增加pvc的配置即可

[root@k8s-master ~/k8s/prometheus]# vim prometheus-statefulset-static-pv.yaml 
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: prometheus-data
  namespace: prometheus
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 16Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv-prometheus
spec:
  capacity:
    storage: 16Gi
  accessModes:
    - ReadWriteOnce
  nfs:
    path: /data/prometheus/prometheus_data
    server: 192.168.16.105
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: prometheus
  namespace: kube-system
  labels:
    k8s-app: prometheus
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    version: v2.2.1
spec:
  serviceName: "prometheus"
  replicas: 1
  podManagementPolicy: "Parallel"
  updateStrategy:
   type: "RollingUpdate"
  selector:
    matchLabels:
      k8s-app: prometheus
  template:
    metadata:
      labels:
        k8s-app: prometheus
    spec:
      priorityClassName: system-cluster-critical
      serviceAccountName: prometheus
      initContainers:
      - name: "init-chown-data"
        image: "busybox:latest"
        imagePullPolicy: "IfNotPresent"
        command: ["chown", "-R", "65534:65534", "/data"]
        volumeMounts:
        - name: prometheus-data
          mountPath: /data
          subPath: ""
      containers:
        - name: prometheus-server-configmap-reload
          image: "jimmidyson/configmap-reload:v0.1"
          imagePullPolicy: "IfNotPresent"
          args:
            - --volume-dir=/etc/config
            - --webhook-url=http://localhost:9090/-/reload
          volumeMounts:
            - name: config-volume
              mountPath: /etc/config
              readOnly: true
          resources:
            limits:
              cpu: 10m
              memory: 10Mi
            requests:
              cpu: 10m
              memory: 10Mi

        - name: prometheus-server
          image: "prom/prometheus:v2.23.0"
          imagePullPolicy: "IfNotPresent"
          args:
            - --config.file=/etc/config/prometheus.yml
            - --storage.tsdb.path=/data
            - --web.console.libraries=/etc/prometheus/console_libraries
            - --web.console.templates=/etc/prometheus/consoles
            - --web.enable-lifecycle
          ports:
            - containerPort: 9090
          readinessProbe:
            httpGet:
              path: /-/ready
              port: 9090
            initialDelaySeconds: 30
            timeoutSeconds: 30
          livenessProbe:
            httpGet:
              path: /-/healthy
              port: 9090
            initialDelaySeconds: 30
            timeoutSeconds: 30
          # based on 10 running nodes with 30 pods each
          resources:
            limits:
              cpu: 200m
              memory: 1000Mi
            requests:
              cpu: 200m
              memory: 1000Mi

          volumeMounts:
            - name: config-volume
              mountPath: /etc/config
            - name: prometheus-data
              mountPath: /data
              subPath: ""
      terminationGracePeriodSeconds: 300
      volumes:
        - name: config-volume
          configMap:
            name: prometheus-config
        - name: prometheus-data
          persistentVolumeClaim:
            claimName: prometheus-data

3.4.2.创建statefulset资源

[root@k8s-master ~/k8s/prometheus]# kubectl create -f  prometheus-statefulset-static-pv.yaml 
persistentvolumeclaim/prometheus-data created
persistentvolume/pv-prometheus created
statefulset.apps/prometheus created

3.5.创建service资源

3.5.1.修改service资源支持nodeport

[root@k8s-master ~/k8s/prometheus]# vim prometheus-service.yaml 
kind: Service
apiVersion: v1
metadata:
  name: prometheus
  namespace: prometheus
  labels:
    kubernetes.io/name: "Prometheus"
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  type: NodePort
  ports:
    - name: http
      port: 9090
      protocol: TCP
      targetPort: 9090
  selector:
    k8s-app: prometheus

3.5.2.创建service资源

[root@k8s-master ~/k8s/prometheus]# kubectl create -f prometheus-service.yaml 
service/prometheus created

3.6.查看创建的prometheus所有资源类型

[root@k8s-master ~/k8s/prometheus]# kubectl get pod,svc,pv,pvc -n prometheus -o wide

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第2张图片

主要访问30387端口看到prometheus

3.7.访问prometheus

使用任意node节点的ip加30387端口即可访问:http://192.168.16.106:30387/

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第3张图片

查看监控主机

可以看到已经有很多了,这些配置都是configmap资源中配置的
Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第4张图片

3.8.prometheus配置文件解释

3.8.1.进入prometheus容器

语法:kubectl exec -it pod名 进入的环境 -c 容器名称 -n 命名空间

[root@k8s-master ~/k8s/prometheus]# kubectl exec -it prometheus-0 sh -c prometheus-server -n prometheus
/prometheus $ 

配置文件位于:/etc/config/prometheus.yml

tsdb存储位于:/data

3.8.2.配置文件解释

/prometheus $ more /etc/config/prometheus.yml

scrape_configs:
- job_name: prometheus
  static_configs:
  - targets:
    - localhost:9090
    
静态配置,将本机加到了prometheus监控,这个localhost就是运行prometheus容器的地址

kubernetes-apiservers自动发现

将apiserver的地址进行暴露并获取监控指标

- job_name: kubernetes-apiservers
  kubernetes_sd_configs:
  - role: endpoints
  relabel_configs:
  - action: keep
    regex: default;kubernetes;https
    source_labels:
    - __meta_kubernetes_namespace
    - __meta_kubernetes_service_name
    - __meta_kubernetes_endpoint_port_name
  scheme: https
  tls_config:
    ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
    insecure_skip_verify: true
  bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第5张图片

k8s的node节点自动发现

自动发现k8s中的所有node节点并进行监控

- job_name: kubernetes-nodes-cadvisor
  kubernetes_sd_configs:
  - role: node
  relabel_configs:
  - action: labelmap
    regex: __meta_kubernetes_node_label_(.+)
  - target_label: __metrics_path__
    replacement: /metrics/cadvisor
  scheme: https
  tls_config:
    ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
    insecure_skip_verify: true
  bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第6张图片

发现endpoint的资源

主要是发现endpoint资源类型的pod,可以通过kubectl get ep查看谁是endpoint资源

- job_name: kubernetes-service-endpoints
  kubernetes_sd_configs:
  - role: endpoints
  relabel_configs:
  - action: keep
    regex: true
    source_labels:
    - __meta_kubernetes_service_annotation_prometheus_io_scrape
  - action: replace
    regex: (https?)
    source_labels:
    - __meta_kubernetes_service_annotation_prometheus_io_scheme
    target_label: __scheme__
  - action: replace
    regex: (.+)
    source_labels:
    - __meta_kubernetes_service_annotation_prometheus_io_path
    target_label: __metrics_path__
  - action: replace
    regex: ([^:]+)(?::\d+)?;(\d+)
    replacement: $1:$2
    source_labels:
    - __address__
    - __meta_kubernetes_service_annotation_prometheus_io_port
    target_label: __address__
  - action: labelmap
    regex: __meta_kubernetes_service_label_(.+)
  - action: replace
    source_labels:
    - __meta_kubernetes_namespace
    target_label: kubernetes_namespace
  - action: replace
    source_labels:
    - __meta_kubernetes_service_name
    target_label: kubernetes_name

在这里插入图片描述

发现services

- job_name: kubernetes-services
  kubernetes_sd_configs:
  - role: service
  metrics_path: /probe
  params:
    module:
    - http_2xx
  relabel_configs:
  - action: keep
    regex: true
    source_labels:
    - __meta_kubernetes_service_annotation_prometheus_io_probe
  - source_labels:
    - __address__
    target_label: __param_target
  - replacement: blackbox
    target_label: __address__
  - source_labels:
    - __param_target
    target_label: instance
  - action: labelmap
    regex: __meta_kubernetes_service_label_(.+)
  - source_labels:
    - __meta_kubernetes_namespace
    target_label: kubernetes_namespace
  - source_labels:
    - __meta_kubernetes_service_name
    target_label: kubernetes_name

发现pod

- job_name: kubernetes-pods
  kubernetes_sd_configs:
  - role: pod
  relabel_configs:
  - action: keep
    regex: true
    source_labels:
    - __meta_kubernetes_pod_annotation_prometheus_io_scrape
  - action: replace
    regex: (.+)
    source_labels:
    - __meta_kubernetes_pod_annotation_prometheus_io_path
    target_label: __metrics_path__
  - action: replace
    regex: ([^:]+)(?::\d+)?;(\d+)
    replacement: $1:$2
    source_labels:
    - __address__
    - __meta_kubernetes_pod_annotation_prometheus_io_port
    target_label: __address__
  - action: labelmap
    regex: __meta_kubernetes_pod_label_(.+)
  - action: replace
    source_labels:
    - __meta_kubernetes_namespace
    target_label: kubernetes_namespace
  - action: replace
    source_labels:
    - __meta_kubernetes_pod_name
    target_label: kubernetes_pod_name

3.9.k8s metrics页面

metrics页面访问如下也没关系,metrics貌似只能集群内部进行访问

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第7张图片

只要能在prometheus搜索到container数据就可以

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第8张图片

4.在k8s中部署grafana

4.1.编写granfana-pv-pvc资源

1.编写资源
[root@k8s-master ~/k8s/prometheus3]# vim grafana_pv_pvc.yaml 
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: grafana-ui-data
  namespace: grafana-ui
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 3Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv-grafana-ui-data
  namespace: grafana-ui
spec:
  capacity:
    storage: 3Gi
  accessModes:
    - ReadWriteOnce
  nfs:
    path: /data/prometheus/grafana
    server: 192.168.16.105
    
2.在nfs上创建对应的挂载点
[root@nfs ~]# mkdir /data/prometheus/grafana

4.2.编写granfana-statefulset资源

[root@k8s-master ~/k8s/prometheus3]# vim grafana_statefulset.yaml 
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: grafana-ui
  namespace: grafana-ui
spec:
  serviceName: "grafana-ui"
  replicas: 1
  selector:
    matchLabels:
      app: grafana-ui
  template:
    metadata:
      labels:
        app: grafana-ui
    spec:
      containers:
      - name: grafana-ui
        image: grafana/grafana:6.6.2
        imagePullPolicy: "IfNotPresent"
        ports:
          - containerPort: 3000
            protocol: TCP
        resources:
          limits:
            cpu: 100m
            memory: 256Mi
          requests:
            cpu: 100m
            memory: 256Mi
        volumeMounts:
          - name: grafana-ui-data
            mountPath: /var/lib/grafana
            subPath: ""
      securityContext:
        fsGroup: 472
        runAsUser: 472
      volumes:
        - name: grafana-ui-data
          persistentVolumeClaim:
            claimName: grafana-ui-data

4.3.编写granfana-svc资源

[root@k8s-master ~/k8s/prometheus3]# vim grafana_svc.yaml 
apiVersion: v1
kind: Service
metadata:
  name: grafana-ui
  namespace: grafana-ui
spec:
  type: NodePort
  ports:
    - name: http
      port: 3000
      protocol: TCP
      targetPort: 3000
  selector:
    app: grafana-ui

4.4.k8s创建grafana

[root@k8s-master ~/k8s/prometheus3]# kubectl create -f grafana_pv_pvc.yaml 
persistentvolumeclaim "grafana-ui-data" created
persistentvolume "pv-grafana-ui-data" created
[root@k8s-master ~/k8s/prometheus3]# kubectl create -f prometheus-statefulset-static-pv.yaml
persistentvolumeclaim/prometheus-data created
persistentvolume/pv-prometheus created
statefulset.apps/prometheus created
[root@k8s-master ~/k8s/prometheus3]# kubectl create -f grafana_svc.yaml 
service/grafana-ui created

4.5.查看资源运行状态

[root@k8s-master ~/k8s/prometheus3]# kubectl get pv,pvc,pod,statefulset,svc -n grafana-ui
NAME                                  CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS        CLAIM                         STORAGECLASS   REASON   AGE
persistentvolume/pv-grafana-ui-data   3Gi        RWO            Retain           Terminating   grafana-ui/grafana-ui-data                            151m
persistentvolume/pv-prometheus        16Gi       RWO            Retain           Bound         kube-system/prometheus-data                           47m

NAME                                    STATUS        VOLUME               CAPACITY   ACCESS MODES   STORAGECLASS   AGE
persistentvolumeclaim/grafana-ui-data   Terminating   pv-grafana-ui-data   3Gi        RWO                           151m

NAME               READY   STATUS    RESTARTS   AGE
pod/grafana-ui-0   1/1     Running   0          16m

NAME                          READY   AGE
statefulset.apps/grafana-ui   1/1     16m

NAME                 TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
service/grafana-ui   NodePort   10.96.170.142           3000:32040/TCP   85m

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第9张图片

4.6.登陆grafana

访问:集群任意ip和32040端口即可访问

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第10张图片

4.7.导入k8s资源监控pod资源模板

推荐模板:

  • 集群资源监控:3119
  • 资源状态监控:6417
  • node监控:9276

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第11张图片

导入成功

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第12张图片

4.8.解决模板表达式问题无法展现所有pod

4.8.1.问题描述

模板中的图形关于pod和docker的全部有问题,仅单单显示一个pod

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第13张图片

4.8.2.问题解决

修改他们的表达式就可以了,将pod_name修改为pod

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第14张图片

修改为立马显示出所有pod,所有关于pod和docker的都是这么改

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第15张图片

最终展示效果

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第16张图片

5.监控k8s node节点

对于node节点的监控我们不用部署在k8s里,直接在每台node机器上安装node_exporter即可

5.1.编写一键部署node_exporter脚本

[root@k8s-master ~/k8s/prometheus3]# vim install_node_exportes.sh 
#!/bin/bash
#批量安装node_exporter
soft_dir=/root/soft
if [ ! -e $soft_dir ];then
        mkdir $soft_dir
fi

netstat -lnpt | grep 9100
if [ $? -eq 0 ];then
        use=`netstat -lnpt | grep 9100 | awk -F/ '{print $NF}'`
        echo "9100端口已经被占用,占用者是 $use"
        exit 1
fi

cd $soft_dir
wget http://192.168.16.106:888/prometheus/node_exporter-1.0.1.linux-amd64.tar.gz
tar xf node_exporter-1.0.1.linux-amd64.tar.gz
mv node_exporter-1.0.1.linux-amd64 /usr/local/node_exporter

cat <<EOF >/usr/lib/systemd/system/node_exporter.service
[Unit]
Description=https://prometheus.io

[Service]
Restart=on-failure
ExecStart=/usr/local/node_exporter/node_exporter --collector.systemd --collector.systemd.unit-whitelist=(docker|kubelet|node_exporter).service

[Install]
WantedBy=multi-user.target
EOF

systemctl daemon-reload
systemctl enable node_exporter
systemctl restart node_exporter

netstat -lnpt | grep 9100

if [ $? -eq 0 ];then
        ehoc "node_eporter install finish..."
fi

5.2.对k8s的node进行执行node_exporter脚本

在这里下载脚本用就行了

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第17张图片

[root@k8s-node1 ~]# wget http://192.168.16.106:888/install_node_exportes.sh

[root@k8s-node1 ~]# sh install_node_exportes.sh 

[root@k8s-node1 ~]#  netstat -lnpt | grep 9100
tcp6       0      0 :::9100                 :::*                    LISTEN      14906/node_exporter 

5.3.在prometheus的configmap资源中增加node节点配置

[root@k8s-master ~/k8s/prometheus3]# vim prometheus-configmap.yaml 
    - job_name: k8s-node
      static_configs:
      - targets:
        - 192.168.16.104:9100
        - 192.168.16.107:9100

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第18张图片

更新配置

更新完配置,prometheus页面会立马显示,因此每当configmap一修改,prometheus容器就会重载

[root@k8s-master ~/k8s/prometheus3]# kubectl apply -f prometheus-configmap.yaml
configmap/prometheus-config created

成功添加node监控

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第19张图片

5.4.导入k8s node主机监控模板

node监控:9276

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第20张图片

填写信息

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第21张图片
查看图形
Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第22张图片

6.k8s使用kube-state-metrics-监控资源状态

6.1.创建rbac资源

[root@k8s-master ~/k8s/prometheus3]# kubectl create kube-state-metrics-rbac.yaml 

6.2.创建deployment资源

deployment资源里面结合了configmap资源

需要把镜像的地址修改成lizhenliang/kube-state-metrics:v1.8.0、lizhenliang/addon-resizer:1.8.6

[root@k8s-master ~/k8s/prometheus3]# kubectl create -f kube-state-metrics-deployment.yaml 

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第23张图片

6.3.创建service资源

[root@k8s-master ~/k8s/prometheus3]# kubectl create -f kube-state-metrics-service.yaml 

6.4.资源准备就绪

[root@k8s-master ~/k8s/prometheus3]# kubectl get all -n kube-system | grep kube-state

在这里插入图片描述

6.5.在prometheus查看是否获取监控指标

安装完kube-state-metrics之后,直接就可以在prometheus上查询监控指标,都是以kube开头的

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第24张图片

6.6.导入k8s 资源状态模板

资源状态监控:6417

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第25张图片

查看图形,也是有很多监控不到

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第26张图片

7.在k8s中部署alertmanager实现告警系统

7.1.创建alertmanager-pv-pvc资源

1.编写yaml
[root@k8s-master ~/k8s/prometheus3]# vim alertmanager-pvc.yaml 
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: alertmanager-data
  namespace: alertmanager
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: EnsureExists
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: "2Gi"
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv-alertmanager-data
  namespace: alertmanager
spec:
  capacity:
    storage: 2Gi
  accessModes:
    - ReadWriteOnce
  nfs:
    path: /data/prometheus/alertmanager
    server: 192.168.16.105

2.创建
[root@k8s-master ~/k8s/prometheus3]# kubectl create -f alertmanager-pvc.yaml
persistentvolumeclaim/alertmanager created
persistentvolume/pv-alertmanager-data create

7.2.创建alertmanager-cm资源增加微信告警配置

增加微信报警

1.增加微信告警配置
[root@k8s-master ~/k8s/prometheus3]# vim alertmanager-configmap.yaml 
apiVersion: v1
kind: ConfigMap
metadata:
  name: alertmanager-config
  namespace: alertmanager
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: EnsureExists
data:
  alertmanager.yml: |
    global:
      resolve_timeout: 5m

    receivers:
    - name: 'wechat'
      wechat_configs:
        - corp_id: 'ww48f74fc8ed3a07ba'
          to_party: '1'
          agent_id: '1000003'
          api_secret: 'j3ocaGJJM7KejlqzBIJ38b6D6t9QhqlIAh7k4fA1cT0'
          send_resolved: true

    route:
      group_interval: 1m
      group_wait: 10s
      receiver: wechat
      repeat_interval: 1m

2.创建资源
[root@k8s-master ~/k8s/prometheus3]# kubectl create -f alertmanager-configmap.yaml 
configmap/alertmanager-config created

7.3.创建alertmanager-deployment资源

[root@k8s-master ~/k8s/prometheus3]# kubectl create -f alertmanager-deployment.yaml 
deployment.apps/alertmanager created

7.4.创建alertmanager-service资源

[root@k8s-master ~/k8s/prometheus3]# kubectl create -f alertmanager-service.yaml
service/alertmanager created

7.5查看alertmanager所有资源

[root@k8s-master ~/k8s/prometheus3]# kubectl get all,pv,pvc,cm -n alertmanager

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第27张图片

7.6.访问alertmanager

任意node节点+31831端口即可

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第28张图片

配置文件已经支持微信报警

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第29张图片

8.配置alertmanager实现k8s告警系统

8.1.在NFS上准备两个告警规则文件

我们对于告警规则文件不采用configmap的方式而是采用pv、pvc的方式把告警规则挂载到容器里

1.在nfs上创建pv存储路径
[root@nfs ~]# mkdir /data/prometheus/rules
[root@nfs ~]# chmod -R 777 /data
[root@nfs ~]# cd /data/prometheus/rules

2.准备主机宕机的告警规则文件
[root@nfs rules]# vim hostdown.yml 
groups:
- name: general.rules
  rules:
  - alert: 主机宕机
    expr: up == 0
    for: 1m
    labels:
      serverity: error
    annotations:
      summary: "主机 {
    { $labels.instance }} 停止工作"
      description: "{
    { $labels.instance }} job {
    { $labels.job }} 已经宕机5分钟以上!"
      
3.准备主机基础监控告警规则文件      
[root@nfs rules]# vim node.yml 
groups:
- name: node.rules
  rules:
  - alert: NodeFilessystemUsage
    expr: 100 - (node_filesystem_free_bytes{fstype=~"ext4|xfs",mountpoint="/"} / node_filesystem_size_bytes{fstype=~"ext4|xfs",mountpoint="/"} *100) > 80
    for: 1m
    labels:
      serverity: warning
    annotations:
      summary: "主机 {
    { $labels.instance }} : {
    { $labels.mountpoint }} 磁盘使用率过高"
      description: "{
    { $labels.instance }} : {
    { $labels.mountpoint }} 磁盘使用率超过80% (当前值: {
    { $value }}) "

  - alert: NodeMemoryUsage
    expr: 100 - ((node_memory_MemFree_bytes+node_memory_Cached_bytes+node_memory_Buffers_bytes) / node_memory_MemTotal_bytes * 100) > 80
    for: 1m
    labels:
      serverity: warning
    annotations:
      summary: "主机 {
    { $labels.instance }} 内存使用率过高"
      description: "{
    { $labels.instance }} 内存使用率超过80% (当前值: {
    { $value }}) "

  - alert: NodeCpuUsage
    expr: 100 - (avg(irate(node_cpu_seconds_total{mode='idle'}[5m])) by (instance) *100) > 80
    for: 1m
    labels:
      serverity: warning
    annotations:
      summary: "主机 {
    { $labels.instance }} CPU使用率过高"
      description: "{
    { $labels.instance }} CPU使用率超过80% (当前值: {
    { $value }}) "

8.2.编写rules告警规则的pv、pvcyaml文件

1.编写资源文件
[root@k8s-master ~/k8s/prometheus3]# vim prometheus-rules-pvc.yaml 
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: prometheus-rules
  namespace: kube-system
  labels:
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: "2Gi"
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv-prometheus-rules
spec:
  capacity:
    storage: 2Gi
  accessModes:
    - ReadWriteOnce
  nfs:
    path: /data/prometheus/rules
    server: 192.168.16.105

2.创建资源
[root@k8s-master ~/k8s/prometheus3]# kubectl create -f prometheus-rules-pvc.yaml
persistentvolumeclaim/prometheus-rules created
persistentvolume/pv-prometheus-rules created

8.3.修改prometheus的statefulset资源集成rules

在prometheus的statefulset资源中增加rules的pvc挂载路径

[root@k8s-master ~/k8s/prometheus3]# vim prometheus-statefulset-static-pv.yaml 
          volumeMounts:
            - name: config-volume
              mountPath: /etc/config
            - name: prometheus-rules
              mountPath: /etc/config/rules
            - name: prometheus-data
              mountPath: /data
              subPath: ""
      terminationGracePeriodSeconds: 300
      volumes:
        - name: config-volume
          configMap:
            name: prometheus-config
        - name: prometheus-rules
          persistentVolumeClaim:
            claimName: prometheus-rules
        - name: prometheus-data
          persistentVolumeClaim:
            claimName: prometheus-data

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第30张图片

8.4.更新prometheus-statefulset资源

[root@k8s-master ~/k8s/prometheus3]# kubectl apply -f prometheus-statefulset-static-pv.yaml 

8.5.修改prometheus-configmap资源配置alertmanager地址

1.修改配置增加alertmanager地址
[root@k8s-master ~/k8s/prometheus3]# vim prometheus-configmap.yaml 
    alerting:
      alertmanagers:
      - static_configs:
        - targets:
          - 192.168.16.106:31831

2.更新资源
[root@k8s-master ~/k8s/prometheus3]# kubectl apply -f prometheus-configmap.yaml
configmap/prometheus-config configured      

8.5.查看页面是否增加告警规则

已经成功填加rules告警规则

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第31张图片

8.6.模拟node主机宕机并查看微信告警内容

模拟触发告警

将任意一个node节点的node_exporter停掉即可
[root@k8s-node1 ~]# systemctl stop node_exporter

告警已经产生

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第32张图片

告警消息已经发送

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第33张图片

查看告警内容

已经成功收到告警,k8s监控系列篇到此结束

Prometheus+Grafana全方位监控Kubernetes集群资源利用率_第34张图片

你可能感兴趣的:(kubernetes)