PyTorch + Ray Tune 调参

参考了PyTorch官方文档Ray Tune官方文档

1、HYPERPARAMETER TUNING WITH RAY TUNE

2、How to use Tune with PyTorch

以PyTorch中的CIFAR 10图片分类为例,示范如何将Ray Tune融入PyTorch模型训练过程中。

其中,要求我们对原PyTorch程序做一些小的修改,包括:

  • 将数据加载和训练过程封装到函数中;
  • 使一些网络参数可配置;
  • 增加检查点(可选);
  • 定义用于模型调参的搜索空间。

下面以示例代码解析的形式介绍Ray Tune具体如何操作:

from functools import partial
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import random_split
import torchvision
import torchvision.transforms as transforms

from ray import tune
from ray.tune import CLIReporter
from ray.tune.schedulers import ASHAScheduler


# 定义神经网络模型
class Net(nn.Module):
    def __init__(self, l1=120, l2=84):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, l1)        # 参数待指定
        self.fc2 = nn.Linear(l1, l2)        # 参数待指定
        self.fc3 = nn.Linear(l2, 10)        # 参数待指定

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


# 封装数据加载过程,传递全局数据路径,以保证不同实验间共享数据路径
def load_data(data_dir="/home/taoshouzheng/Local_Connection/Algorithms/ray/"):
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    trainset = torchvision.datasets.CIFAR10(
        root=data_dir, train=True, download=True, transform=transform)

    testset = torchvision.datasets.CIFAR10(
        root=data_dir, train=False, download=True, transform=transform)

    return trainset, testset


# 封装训练脚本
# config参数用于指定超参数
# checkpoint_dir参数用于存储检查点
# data_dir参数用于指定数据加载和存储路径
def train_cifar(config, checkpoint_dir=None, data_dir=None):

    # 模型实例化
    net = Net(config["l1"], config["l2"])       # 2个超参数

    # 这种写法保证没有GPU可用时模型也可以训练
    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda:0"
        if torch.cuda.device_count() > 1:
            # 将模型封装到nn.DataParallel中以支持多GPU并行训练
            net = nn.DataParallel(net)
    net.to(device)

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=config["lr"], momentum=0.9)      # 1个超参数

    # 用于存储检查点
    if checkpoint_dir:
        # 模型的状态、优化器的状态
        model_state, optimizer_state = torch.load(
            os.path.join(checkpoint_dir, "checkpoint"))
        net.load_state_dict(model_state)
        optimizer.load_state_dict(optimizer_state)

    trainset, testset = load_data(data_dir)

    test_abs = int(len(trainset) * 0.8)
    # 将训练数据划分为训练集(80%)和验证集(20%)
    train_subset, val_subset = random_split(
        trainset, [test_abs, len(trainset) - test_abs])

    trainloader = torch.utils.data.DataLoader(
        train_subset,
        batch_size=int(config["batch_size"]),       # 1个超参数
        shuffle=True,
        num_workers=8)
    valloader = torch.utils.data.DataLoader(
        val_subset,
        batch_size=int(config["batch_size"]),
        shuffle=True,
        num_workers=8)

    for epoch in range(10):  # loop over the dataset multiple times
        running_loss = 0.0
        epoch_steps = 0

        # 训练循环
        for i, data in enumerate(trainloader, 0):
            # get the inputs; data is a list of [inputs, labels]
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)
            # zero the parameter gradients
            optimizer.zero_grad()
            # forward + backward + optimize
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            # print statistics
            running_loss += loss.item()
            epoch_steps += 1
            if i % 2000 == 1999:  # print every 2000 mini-batches
                print("[%d, %5d] loss: %.3f" % (epoch + 1, i + 1,
                                                running_loss / epoch_steps))
                running_loss = 0.0

        # 验证循环
        # Validation loss
        val_loss = 0.0
        val_steps = 0
        total = 0
        correct = 0
        for i, data in enumerate(valloader, 0):
            with torch.no_grad():
                inputs, labels = data
                inputs, labels = inputs.to(device), labels.to(device)

                outputs = net(inputs)
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()

                loss = criterion(outputs, labels)
                val_loss += loss.cpu().numpy()
                val_steps += 1

        # 保存检查点
        # ray.tune.checkpoint_dir(step)返回检查点路径
        with tune.checkpoint_dir(epoch) as checkpoint_dir:
            path = os.path.join(checkpoint_dir, "checkpoint")
            torch.save((net.state_dict(), optimizer.state_dict()), path)
        # 打印平均损失和平均精度
        tune.report(loss=(val_loss / val_steps), accuracy=correct / total)
    print("Finished Training")


# 测试集精度
def test_accuracy(net, device="cpu"):
    trainset, testset = load_data()

    testloader = torch.utils.data.DataLoader(
        testset, batch_size=4, shuffle=False, num_workers=2)

    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    return correct / total


def main(num_samples=10, max_num_epochs=10, gpus_per_trial=2):
    # 全局文件路径
    data_dir = os.path.abspath("/home/taoshouzheng/Local_Connection/Algorithms/ray/")
    # 加载训练数据
    load_data(data_dir)
    # 配置超参数搜索空间
    # 每次实验,Ray Tune会随机采样超参数组合,并行训练模型,找到最优参数组合
    config = {
        # 自定义采样方法
        "l1": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)),
        "l2": tune.sample_from(lambda _: 2 ** np.random.randint(2, 9)),
        # 随机分布采样
        "lr": tune.loguniform(1e-4, 1e-1),
        # 从类别型值中随机选择
        "batch_size": tune.choice([2, 4, 8, 16])
    }
    # ASHAScheduler会根据指定标准提前中止坏实验
    scheduler = ASHAScheduler(
        metric="loss",
        mode="min",
        max_t=max_num_epochs,
        grace_period=1,
        reduction_factor=2)
    # 在命令行打印实验报告
    reporter = CLIReporter(
        # parameter_columns=["l1", "l2", "lr", "batch_size"],
        metric_columns=["loss", "accuracy", "training_iteration"])
    # 执行训练过程
    result = tune.run(
        partial(train_cifar, data_dir=data_dir),
        # 指定训练资源
        resources_per_trial={"cpu": 8, "gpu": gpus_per_trial},
        config=config,
        num_samples=num_samples,
        scheduler=scheduler,
        progress_reporter=reporter)

    # 找出最佳实验
    best_trial = result.get_best_trial("loss", "min", "last")
    # 打印最佳实验的参数配置
    print("Best trial config: {}".format(best_trial.config))
    print("Best trial final validation loss: {}".format(
        best_trial.last_result["loss"]))
    print("Best trial final validation accuracy: {}".format(
        best_trial.last_result["accuracy"]))

    # 打印最优超参数组合对应的模型在测试集上的性能
    best_trained_model = Net(best_trial.config["l1"], best_trial.config["l2"])
    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda:0"
        if gpus_per_trial > 1:
            best_trained_model = nn.DataParallel(best_trained_model)
    best_trained_model.to(device)

    best_checkpoint_dir = best_trial.checkpoint.value
    model_state, optimizer_state = torch.load(os.path.join(
        best_checkpoint_dir, "checkpoint"))
    best_trained_model.load_state_dict(model_state)

    test_acc = test_accuracy(best_trained_model, device)
    print("Best trial test set accuracy: {}".format(test_acc))


if __name__ == "__main__":
    # You can change the number of GPUs per trial here:
    main(num_samples=10, max_num_epochs=10, gpus_per_trial=0)

第一次运行结果如下:

 PyTorch + Ray Tune 调参_第1张图片

第二次运行结果如下:

PyTorch + Ray Tune 调参_第2张图片

 第三次运行结果如下:

PyTorch + Ray Tune 调参_第3张图片

 第四次运行结果如下:

PyTorch + Ray Tune 调参_第4张图片

 第五次运行结果如下:

PyTorch + Ray Tune 调参_第5张图片

从以上5组结果可以看出,虽然Ray Tune调参很高效,但最好运行多次对比效果,尤其当超参数组合比较复杂的时候。 

你可能感兴趣的:(pytorch,Ray,Tune,PyTorch,深度学习,调参,超参数)