Lucene学习总结之八:Lucene的查询语法,JavaCC及QueryParser

一、Lucene的查询语法

Lucene所支持的查询语法可见http://lucene.apache.org/java/3_0_1/queryparsersyntax.html

(1) 语法关键字

+ - && || ! ( ) { } [ ] ^ " ~ * ? : /

如果所要查询的查询词中本身包含关键字,则需要用/进行转义

(2) 查询词(Term)

Lucene支持两种查询词,一种是单一查询词,如"hello",一种是词组(phrase),如"hello world"。

(3) 查询域(Field)

在查询语句中,可以指定从哪个域中寻找查询词,如果不指定,则从默认域中查找。

查询域和查询词之间用:分隔,如title:"Do it right"。

:仅对紧跟其后的查询词起作用,如果title:Do it right,则仅表示在title中查询Do,而it right要在默认域中查询。

(4) 通配符查询(Wildcard)

支持两种通配符:?表示一个字符,*表示多个字符。

通配符可以出现在查询词的中间或者末尾,如te?t,test*,te*t,但决不能出现在开始,如*test,?test。

(5) 模糊查询(Fuzzy)

模糊查询的算法是基于Levenshtein Distance,也即当两个词的差别小于某个比例的时候,就算匹配,如roam~0.8,即表示差别小于0.2,相似度大于0.8才算匹配。

(6) 临近查询(Proximity)

在词组后面跟随~10,表示词组中的多个词之间的距离之和不超过10,则满足查询。

所谓词之间的距离,即查询词组中词为满足和目标词组相同的最小移动次数。

如索引中有词组"apple boy cat"。

如果查询词为"apple boy cat"~0,则匹配。

如果查询词为"boy apple cat"~2,距离设为2方能匹配,设为1则不能匹配。

(0)

boy

apple

cat

(1)

 

boy

apple

cat

(2)

apple

boy

cat

如果查询词为"cat boy apple"~4,距离设为4方能匹配。

(0)

cat

boy

apple

(1)

 

cat

boy

apple

(2)

 

boy

cat

apple

(3)

 

boy

apple

cat

(4)

apple

boy

cat

 

(7) 区间查询(Range)

区间查询包含两种,一种是包含边界,用[A TO B]指定,一种是不包含边界,用{A TO B}指定。

如date:[20020101 TO 20030101],当然区间查询不仅仅用于时间,如title:{Aida TO Carmen}

(8) 增加一个查询词的权重(Boost)

可以在查询词后面加^N来设定此查询词的权重,默认是1,如果N大于1,则说明此查询词更重要,如果N小于1,则说明此查询词更不重要。

如jakarta^4 apache,"jakarta apache"^4 "Apache Lucene"

(9) 布尔操作符

布尔操作符包括连接符,如AND,OR,和修饰符,如NOT,+,-。

默认状态下,空格被认为是OR的关系,QueryParser.setDefaultOperator(Operator.AND)设置为空格为AND。

+表示一个查询语句是必须满足的(required),NOT和-表示一个查询语句是不能满足的(prohibited)。

(10) 组合

可以用括号,将查询语句进行组合,从而设定优先级。

如(jakarta OR apache) AND website

 

Lucene的查询语法是由QueryParser来进行解析,从而生成查询对象的。

通过编译原理我们知道,解析一个语法表达式,需要经过词法分析和语法分析的过程,也即需要词法分析器和语法分析器。

QueryParser是通过JavaCC来生成词法分析器和语法分析器的。

 

二、JavaCC介绍

本节例子基本出于JavaCC tutorial的文章,http://www.engr.mun.ca/~theo/JavaCC-Tutorial/

JavaCC是一个词法分析器和语法分析器的生成器。

所谓词法分析器就是将一系列字符分成一个个的Token,并标记Token的分类。

例如,对于下面的C语言程序:

int main() {

    return 0 ;

}

    

将被分成以下的Token:

“int”, “ ”, “main”, “(”, “)”,

“”,“{”, “/n”, “/t”, “return”

“”,“0”,“”,“;”,“/n”,

“}”, “/n”, “”

标记了Token的类型后如下:

KWINT, SPACE, ID, OPAR, CPAR,

SPACE, OBRACE, SPACE, SPACE, KWRETURN,

SPACE, OCTALCONST, SPACE, SEMICOLON, SPACE,

CBRACE, SPACE, EOF

EOF表示文件的结束。

词法分析器工作过程如图所示:

 

Lucene学习总结之八:Lucene的查询语法,JavaCC及QueryParser

 

此一系列Token将被传给语法分析器(当然并不是所有的Token都会传给语法分析器,本例中SPACE就例外),从而形成一棵语法分析树来表示程序的结构。

 

Lucene学习总结之八:Lucene的查询语法,JavaCC及QueryParser

JavaCC本身既不是一个词法分析器,也不是一个语法分析器,而是根据指定的规则生成两者的生成器。

2.1、第一个实例——正整数相加

下面我们来看第一个例子,即能够解析正整数相加的表达式,例如99+42+0+15。

(1) 生成一个adder.jj文件

此文件中写入的即生成词法分析器和语法分析器的规则。

(2) 设定选项,并声明类

 

/* adder.jj Adding up numbers */

options {

  STATIC = false ;

}

PARSER_BEGIN(Adder)

class Adder {

  static void main( String[] args ) throws ParseException, TokenMgrError {

    Adder parser = new Adder( System.in ) ;

    parser.Start() ;

  }

}

PARSER_END(Adder)

STATIC选项默认是true,设为false,使得生成的函数不是static的。

PARSER_BEGIN和PARSER_END之间的java代码部分,此部分不需要通过JavaCC根据规则生成java代码,而是直接拷贝到生成的java代码中的。

(3) 声明一个词法分析器

SKIP : { " " }

SKIP : { "/n" | "/r" | "/r/n" }

TOKEN : { < PLUS : "+" > }

TOKEN : { < NUMBER : (["0"-"9"])+ > }

第一二行表示空格和回车换行是不会传给语法分析器的。

第三行声明了一个Token,名称为PLUS,符号为“+”。

第四行声明了一个Token,名称为NUMBER,符号位一个或多个0-9的数的组合。

如果词法分析器分析的表达式如下:

  • “123 + 456/n”,则分析为NUMBER, PLUS, NUMBER, EOF
  • “123 - 456/n”,则报TokenMgrError,因为“-”不是一个有效的Token.
  • “123 ++ 456/n”,则分析为NUMBER, PLUS, PLUS, NUMBER, EOF,词法分析正确,后面的语法分析将会错误。

(4) 声明一个语法分析器

void Start() :

{}

{

  <NUMBER>

  (

    <PLUS>

    <NUMBER>

  )*

  <EOF>

}

语法分析器使用BNF表达式。

上述声明将生成start函数,称为Adder类的一个成员函数

语法分析器要求输入的语句必须以NUMBER开始,以EOF结尾,中间是零到多个PLUS和NUMBER的组合。

(5) 用javacc编译adder.jj来生成语法分析器和词法分析器

最后生成的adder.jj如下:

options 

  static = false; 
}

PARSER_BEGIN(Adder) 
package org.apache.javacc;

public class Adder 

  public static void main(String args []) throws ParseException 
  { 
    Adder parser = new Adder(System.in); 
    parser.start(); 
  } 

PARSER_END(Adder)

SKIP : 

  " " 
| "/r" 
| "/t" 
| "/n" 
}

TOKEN : /* OPERATORS */ 

  < PLUS : "+" > 
}

TOKEN : 

  < NUMBER : ([ "0"-"9" ])+ > 
}

void start() : 
{} 

  <NUMBER> 
  ( 
    <PLUS> 
    <NUMBER> 
  )* 
}

用JavaCC编译adder.jj生成如下文件:

  • Adder.java:语法分析器。其中的main函数是完全从adder.jj中拷贝的,而start函数是被javacc由adder.jj描述的规则生成的。
  • AdderConstants.java:一些常量,如PLUS, NUMBER, EOF等。
  • AdderTokenManager.java:词法分析器。
  • ParseException.java:用于在语法分析错误的时候抛出。
  • SimpleCharStream.java:用于将一系列字符串传入词法分析器。
  • Token.java:代表词法分析后的一个个Token。Token对象有一个整型域kind,来表示此Token的类型(PLUS, NUMBER, EOF),有一个String类型的域image,来表示此Token的值。
  • TokenMgrError.java:用于在词法分析错误的时候抛出。

下面我们对adder.jj生成的start函数进行分析:

final public void start() throws ParseException {

  //从词法分析器取得下一个Token,而且要求必须是NUMBER类型,否则抛出异常。

  //此步要求表达式第一个出现的字符必须是NUMBER。

  jj_consume_token(NUMBER);

  label_1:

  while (true) {

    //jj_ntk()是取得下一个Token的类型,如果是PLUS,则继续进行,如果是EOF则退出循环。

    switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {

    case PLUS:

      ;

      break;

    default:

      jj_la1[0] = jj_gen;

      break label_1;

    }

   //要求下一个PLUS字符,再下一个是一个NUMBER,如此下去。

    jj_consume_token(PLUS);

    jj_consume_token(NUMBER);

  }

}

(6) 运行Adder.java

如果输入“123+456”则不报任何错误。

如果输入“123++456”则报如下异常:

Exception in thread "main" org.apache.javacc.ParseException: Encountered " "+" "+ "" at line 1, column 5. 
Was expecting: 
    <NUMBER> ... 
    at org.apache.javacc.Adder.generateParseException(Adder.java:185) 
    at org.apache.javacc.Adder.jj_consume_token(Adder.java:123) 
    at org.apache.javacc.Adder.start(Adder.java:24) 
    at org.apache.javacc.Adder.main(Adder.java:8)

如果输入“123-456”则报如下异常:

Exception in thread "main" org.apache.javacc.TokenMgrError: Lexical error at line 1, column 4.  Encountered: "-" (45), after : "" 
    at org.apache.javacc.AdderTokenManager.getNextToken(AdderTokenManager.java:262) 
    at org.apache.javacc.Adder.jj_ntk(Adder.java:148) 
    at org.apache.javacc.Adder.start(Adder.java:15) 
    at org.apache.javacc.Adder.main(Adder.java:8)

2.2、扩展语法分析器

在上面的例子中的start函数中,我们仅仅通过语法分析器来判断输入的语句是否正确。

我们可以扩展BNF表达式,加入Java代码,使得经过语法分析后,得到我们想要的结果或者对象。

我们将start函数改写为:

int start() throws NumberFormatException :

{

  //start函数中有三个变量

  Token t ;

  int i ;

  int value ;

}

{

  //首先要求表达式的第一个一定是一个NUMBER,并把其值付给t

  t= <NUMBER>

  //将t的值取出来,解析为整型,放入变量i中

  { i = Integer.parseInt( t.image ) ; }

  //最后的结果value设为i

  { value = i ; }

  //紧接着应该是零个或者多个PLUS和NUMBER的组合

  (

    <PLUS>

    //每出现一个NUMBER,都将其付给t,并将t的值解析为整型,付给i

    t= <NUMBER>

    { i = Integer.parseInt( t.image ) ; }

    //将i加到value上

    { value += i ; }

  )*

  //最后的value就是表达式的和

  { return value ; }

}

生成的start函数如下:

final public int start() throws ParseException, NumberFormatException {

  Token t;

  int i;

  int value;

  t = jj_consume_token(NUMBER);

  i = Integer.parseInt(t.image);

  value = i;

  label_1: while (true) {

    switch ((jj_ntk == -1) ? jj_ntk() : jj_ntk) {

    case PLUS:

      ;

      break;

    default:

      jj_la1[0] = jj_gen;

      break label_1;

    }

    jj_consume_token(PLUS);

    t = jj_consume_token(NUMBER);

    i = Integer.parseInt(t.image);

    value += i;

  }

  {

    if (true)

      return value;

  }

  throw new Error("Missing return statement in function");

}

从上面的例子,我们发现,把一个NUMBER取出,并解析为整型这一步是可以共用的,所以可以抽象为一个函数:

int start() throws NumberFormatException :

{

  int i;

  int value ;

}

{

  value = getNextNumberValue()

  (

    <PLUS>

    i = getNextNumberValue()

    { value += i ; }

  )*

  { return value ; }

}

int getNextNumberValue() throws NumberFormatException :

{

  Token t ;

}

{

  t=<NUMBER>

  { return Integer.parseInt( t.image ) ; }

}

生成的函数如下:

 

final public int start() throws ParseException, NumberFormatException {

  int i;

  int value;

  value = getNextNumberValue();

  label_1: while (true) {

    switch ((jj_ntk == -1) ? jj_ntk() : jj_ntk) {

    case PLUS:

      ;

      break;

    default:

      jj_la1[0] = jj_gen;

      break label_1;

    }

    jj_consume_token(PLUS);

    i = getNextNumberValue();

    value += i;

  }

  {

    if (true)

      return value;

  }

  throw new Error("Missing return statement in function");

}

final public int getNextNumberValue() throws ParseException, NumberFormatException {

  Token t;

  t = jj_consume_token(NUMBER);

  {

    if (true)

      return Integer.parseInt(t.image);

  }

  throw new Error("Missing return statement in function");

}

 

2.3、第二个实例:计算器

(1) 生成一个calculator.jj文件

用于写入生成计算器词法分析器和语法分析器的规则。

(2) 设定选项,并声明类

options {

STATIC = false ;

}

PARSER_BEGIN(Calculator)

  import java.io.PrintStream ;

  class Calculator {

    static void main( String[] args ) throws ParseException, TokenMgrError, NumberFormatException {

      Calculator parser = new Calculator( System.in ) ;

      parser.Start( System.out ) ;

    }

    double previousValue = 0.0 ;

  }

PARSER_END(Calculator)

previousValue用来记录上一次计算的结果。

(3) 声明一个词法分析器

SKIP : { " " }

TOKEN : { < EOL:"/n" | "/r" | "/r/n" > }

TOKEN : { < PLUS : "+" > }

我们想要支持小数,则有四种情况:没有小数,小数点在中间,小数点在前面,小数点在后面。则语法规则如下:

TOKEN { < NUMBER : (["0"-"9"])+ | (["0"-"9"])+ "." (["0"-"9"])+ | (["0"-"9"])+ "." | "." (["0"-"9"])+ > }

由于同一个表达式["0"-"9"]使用了多次,因而我们可以定义变量,如下:

TOKEN : { < NUMBER : <DIGITS> | <DIGITS> "." <DIGITS> | <DIGITS> "." | "." <DIGITS>> }

TOKEN : { < #DIGITS : (["0"-"9"])+ > }

(4) 声明一个语法分析器

我们想做的计算器包含多行,每行都是一个四则运算表达式,语法规则如下:

Start -> (Expression EOL)* EOF

void Start(PrintStream printStream) throws NumberFormatException :

{}

{

  (

    previousValue = Expression()

    <EOL>

    { printStream.println( previousValue ) ; }

  )*

  <EOF>

}

每一行的四则运算表达式如果只包含加法,则语法规则如下:

Expression -> Primary (PLUS Primary)*

double Expression() throws NumberFormatException :

{

  double i ;

  double value ;

}

{

  value = Primary()

  (

    <PLUS>

    i= Primary()

    { value += i ; }

  )*

  { return value ; }

}

其中Primary()得到一个数的值:

double Primary() throws NumberFormatException :

{

  Token t ;

}

{

  t= <NUMBER>

  { return Double.parseDouble( t.image ) ; }

}

(5) 扩展词法分析器和语法分析器

如果我们想支持减法,则需要在词法分析器中添加:

TOKEN : { < MINUS : "-" > }

语法分析器应该变为:

Expression -> Primary (PLUS Primary | MINUS Primary)*

double Expression() throws NumberFormatException :

{

  double i ;

  double value ;

}

{

  value = Primary()

  (

    <PLUS>

    i = Primary()

    { value += i ; }

    |

    <MINUS>

    i = Primary()

    { value -= i ; }

  )*

  { return value ; }

}

如果我们想添加乘法和除法,则在词法分析器中应该加入:

TOKEN : { < TIMES : "*" > }

TOKEN : { < DIVIDE : "/" > }

对于加减乘除混合运算,则应该考虑优先级,乘除的优先级高于加减,应该先做乘除,再做加减:

Expression -> Term (PLUSTerm | MINUSTerm)*

Term -> Primary (TIMES Primary | DIVIDE Primary)*

double Expression() throws NumberFormatException :

{

  double i ;

  double value ;

}

{

  value = Term()

  (

    <PLUS>

    i= Term()

    { value += i ; }

    |

    <MINUS>

    i= Term()

    { value -= i ; }

  )*

  { return value ; }

}

double Term() throws NumberFormatException :

{

  double i ;

  double value ;

}

{

  value = Primary()

  (

    <TIMES>

    i = Primary()

    { value *= i ; }

    |

    <DIVIDE>

    i = Primary()

    { value /= i ; }

  )*

  { return value ; }

}

下面我们要开始支持括号,负号,以及取得上一行四则运算表达式的值。

对于词法分析器,我们添加如下Token:

TOKEN : { < OPEN PAR : "(" > }

TOKEN : { < CLOSE PAR : ")" > }

TOKEN : { < PREVIOUS : "$" > }

对于语法分析器,对于最基本的表达式,有四种情况:

其可以是一个NUMBER,也可以是上一行四则运算表达式的值PREVIOUS,也可以是被括号括起来的一个子语法表达式,也可以是取负的一个基本语法表达式。

Primary –> NUMBER | PREVIOUS | OPEN_PAR Expression CLOSE_PAR | MINUS Primary

double Primary() throws NumberFormatException :

{

  Token t ;

  double d ;

}

{

  t=<NUMBER>

  { return Double.parseDouble( t.image ) ; }

  |

  <PREVIOUS>

  { return previousValue ; }

  |

  <OPEN PAR> d=Expression() <CLOSE PAR>

  { return d ; }

  |

  <MINUS> d=Primary()

  { return -d ; }

}

(6) 用javacc编译calculator.jj来生成语法分析器和词法分析器

最后生成的calculator.jj如下:

options 

  static = false; 
}

PARSER_BEGIN(Calculator) 
package org.apache.javacc.calculater; 
  import java.io.PrintStream ; 
  class Calculator { 
    static void main( String[] args ) throws ParseException, TokenMgrError, NumberFormatException { 
      Calculator parser = new Calculator( System.in ) ; 
      parser.start( System.out ) ; 
    } 
    double previousValue = 0.0 ; 
  } 
PARSER_END(Calculator)

SKIP : { " " } 
TOKEN : { < EOL: "/n" | "/r" | "/r/n" > } 
TOKEN : { < PLUS : "+" > } 
TOKEN : { < MINUS : "-" > } 
TOKEN : { < TIMES : "*" > } 
TOKEN : { < DIVIDE : "/" > } 
TOKEN : { < NUMBER : <DIGITS> | <DIGITS> "." <DIGITS> | <DIGITS> "." | "." <DIGITS>> } 
TOKEN : { < #DIGITS : (["0"-"9"])+ > } 
TOKEN : { < OPEN_PAR : "(" > } 
TOKEN : { < CLOSE_PAR : ")" > } 
TOKEN : { < PREVIOUS : "$" > }

void start(PrintStream printStream) throws NumberFormatException : 
{} 

  ( 
    previousValue = Expression() 
    { printStream.println( previousValue ) ; } 
  )* 
}

double Expression() throws NumberFormatException : 

  double i ; 
  double value ; 


  value = Term() 
  ( 
    <PLUS> 
    i= Term() 
    { value += i ; } 
    | 
    <MINUS> 
    i= Term() 
    { value -= i ; } 
  )* 
  { return value ; } 
}

double Term() throws NumberFormatException : 

  double i ; 
  double value ; 


  value = Primary() 
  ( 
    <TIMES> 
    i = Primary() 
    { value *= i ; } 
    | 
    <DIVIDE> 
    i = Primary() 
    { value /= i ; } 
  )* 
  { return value ; } 
}

double Primary() throws NumberFormatException : 

  Token t ; 
  double d ; 


  t=<NUMBER> 
  { return Double.parseDouble( t.image ) ; } 
  | 
  <PREVIOUS> 
  { return previousValue ; } 
  | 
  <OPEN_PAR> d=Expression() <CLOSE_PAR> 
  { return d ; } 
  | 
  <MINUS> d=Primary() 
  { return -d ; } 
}

生成的start函数如下:

final public void start(PrintStream printStream) throws ParseException, NumberFormatException {

  label_1:

  while (true) {

    switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {

    case MINUS:

    case NUMBER:

    case OPEN_PAR:

    case PREVIOUS:

      ;

      break;

    default:

      jj_la1[0] = jj_gen;

      break label_1;

    }

    previousValue = Expression();

    printStream.println( previousValue ) ;

  }

}

final public double Expression() throws ParseException, NumberFormatException {

  double i ;

  double value ;

  value = Term();

  label_2:

  while (true) {

    switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {

    case PLUS:

    case MINUS:

      ;

      break;

    default:

      jj_la1[1] = jj_gen;

      break label_2;

    }

    switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {

    case PLUS:

      jj_consume_token(PLUS);

      i = Term();

      value += i ;

      break;

    case MINUS:

      jj_consume_token(MINUS);

      i = Term();

      value -= i ;

      break;

    default:

      jj_la1[2] = jj_gen;

      jj_consume_token(-1);

      throw new ParseException();

    }

  }

  {if (true) return value ;}

  throw new Error("Missing return statement in function");

}

final public double Term() throws ParseException, NumberFormatException {

  double i ;

  double value ;

  value = Primary();

  label_3:

  while (true) {

    switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {

    case TIMES:

    case DIVIDE:

      ;

      break;

    default:

      jj_la1[3] = jj_gen;

      break label_3;

    }

    switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {

    case TIMES:

      jj_consume_token(TIMES);

      i = Primary();

      value *= i ;

      break;

    case DIVIDE:

      jj_consume_token(DIVIDE);

      i = Primary();

      value /= i ;

      break;

    default:

      jj_la1[4] = jj_gen;

      jj_consume_token(-1);

      throw new ParseException();

    }

  }

  {if (true) return value ;}

  throw new Error("Missing return statement in function");

}

final public double Primary() throws ParseException, NumberFormatException {

  Token t ;

  double d ;

  switch ((jj_ntk==-1)?jj_ntk():jj_ntk) {

  case NUMBER:

    t = jj_consume_token(NUMBER);

    {if (true) return Double.parseDouble( t.image ) ;}

    break;

  case PREVIOUS:

    jj_consume_token(PREVIOUS);

    {if (true) return previousValue ;}

    break;

  case OPEN_PAR:

    jj_consume_token(OPEN_PAR);

    d = Expression();

    jj_consume_token(CLOSE_PAR);

    {if (true) return d ;}

    break;

  case MINUS:

    jj_consume_token(MINUS);

    d = Primary();

    {if (true) return -d ;}

    break;

  default:

    jj_la1[5] = jj_gen;

    jj_consume_token(-1);

    throw new ParseException();

  }

  throw new Error("Missing return statement in function");

}


三、解析QueryParser.jj

 

3.1、声明QueryParser类

在QueryParser.jj文件中,PARSER_BEGIN(QueryParser)和PARSER_END(QueryParser)之间,定义了QueryParser类。

其中最重要的一个函数是public Query parse(String query)函数,也即我们解析Lucene查询语法的时候调用的函数。

这是一个纯Java代码定义的函数,会直接拷贝到QueryParser.java文件中。

parse函数中,最重要的一行代码是调用Query res = TopLevelQuery(field),而TopLevelQuery函数是QueryParser.jj中定义的语法分析器被JavaCC编译后会生成的函数。

3.2、声明词法分析器

在解析词法分析器之前,首先介绍一下JavaCC的词法状态的概念(lexical state)。

有可能存在如下的情况,在不同的情况下,要求的词法词法规则不同,比如我们要解析一个java文件(即满足java语法的表达式),在默认的状态DEFAULT下,是要求解析的对象(即表达式)满足java语言的词法规则,然而当出现"/**"的时候,其后面的表达式则不需要满足java语言的语法规则,而是应该满足java注释的语法规则(要识别@param变量等),于是我们做如下定义:

//默认处于DEFAULT状态,当遇到/**的时候,转换为IN_JAVADOC_COMMENT状态

<DEFAULT> TOKEN : {<STARTDOC : “/**” > : IN_JAVADOC_COMMENT }

//在IN_JAVADOC_COMMENT状态下,需要识别@param变量

<IN_JAVADOC_COMMENT> TOKEN : {<PARAM : "@param" >}

//在IN_JAVADOC_COMMENT状态下,遇到*/的时候,装换为DEFAULT状态

<IN_JAVADOC_COMMENT> TOKEN : {<ENDDOC: "*/">: DEFAULT }

<*> 表示应用于任何状态。

(1) 应用于所有状态的变量

<*> TOKEN : {

  <#_NUM_CHAR:   ["0"-"9"] > //数字

| <#_ESCAPED_CHAR: "//" ~[] > //"/"后的任何一个字符都是被转义的

| <#_TERM_START_CHAR: ( ~[ " ", "/t", "/n", "/r", "/u3000", "+", "-", "!", "(", ")", ":", "^", "[", "]", "/"", "{", "}", "~", "*", "?", "//" ] | <_ESCAPED_CHAR> ) > //表达式中任何一个term,都不能以[]括起来的列表中的lucene查询语法关键字开头,当然被转义的除外。

| <#_TERM_CHAR: ( <_TERM_START_CHAR> | <_ESCAPED_CHAR> | "-" | "+" ) > //表达式中的term非起始字符,可以包含任何非语法关键字字符,转义过的字符,也可以包含+, -(但包含+,-的符合词法,不合语法)。

| <#_WHITESPACE: ( " " | "/t" | "/n" | "/r" | "/u3000") > //被认为是空格的字符

| <#_QUOTED_CHAR: ( ~[ "/"", "//" ] | <_ESCAPED_CHAR> ) > //被引号括起来的字符不应再包括"和/,当然转义过的除外。

}

 

(2) 默认状态的Token

<DEFAULT> TOKEN : {

  <AND:       ("AND" | "&&") >

| <OR:        ("OR" | "||") >

| <NOT:       ("NOT" | "!") >

| <PLUS:      "+" >

| <MINUS:     "-" >

| <LPAREN:    "(" >

| <RPAREN:    ")" >

| <COLON:     ":" >

| <STAR:      "*" >

| <CARAT:     "^" > : Boost //当遇到^的时候,后面跟随的是boost表达式,进入Boost状态

| <QUOTED:     "/"" (<_QUOTED_CHAR>)* "/"">

| <TERM:      <_TERM_START_CHAR> (<_TERM_CHAR>)*  >

| <FUZZY_SLOP:     "~" ( (<_NUM_CHAR>)+ ( "." (<_NUM_CHAR>)+ )? )? > //Fuzzy查询,~后面跟小数。

| <PREFIXTERM:  ("*") | ( <_TERM_START_CHAR> (<_TERM_CHAR>)* "*" ) > //使用*进行Prefix查询,可以尽包含*,或者末尾包含*,然而只包含*符合词法,不合语法。

| <WILDTERM:  (<_TERM_START_CHAR> | [ "*", "?" ]) (<_TERM_CHAR> | ( [ "*", "?" ] ))* > //使用*和?进行wildcard查询

| <RANGEIN_START: "[" > : RangeIn //遇到[]的时候,是包含边界的Range查询

| <RANGEEX_START: "{" > : RangeEx //遇到{}的时候,是不包含边界的Range查询

}

<Boost> TOKEN : {

<NUMBER:    (<_NUM_CHAR>)+ ( "." (<_NUM_CHAR>)+ )? > : DEFAULT //boost是一个小数

}

//包含边界的Range查询是[A TO B]的形式。

<RangeIn> TOKEN : {

<RANGEIN_TO: "TO">

| <RANGEIN_END: "]"> : DEFAULT

| <RANGEIN_QUOTED: "/"" (~["/""] | "///"")+ "/"">

| <RANGEIN_GOOP: (~[ " ", "]" ])+ >

}

//不包含边界的Range查询是{A TO B}的形式

<RangeEx> TOKEN : {

<RANGEEX_TO: "TO">

| <RANGEEX_END: "}"> : DEFAULT

| <RANGEEX_QUOTED: "/"" (~["/""] | "///"")+ "/"">

| <RANGEEX_GOOP: (~[ " ", "}" ])+ >

}

 

3.3、声明语法分析器

Lucene的语法规则如下:

Query  ::= ( Clause )*

Clause ::= ["+", "-"] [<TERM> ":"] ( <TERM> | "(" Query ")" )

(1) 从Query到Clause

一个Query查询语句,是由多个clause组成的,每个clause有修饰符Modifier,或为+, 或为-,clause之间的有连接符,或为AND,或为OR,或为NOT。

在Lucene的语法解析中NOT被算作Modifier,和-起相同作用。

此过程表达式如下:

Query TopLevelQuery(String field) :

{

    Query q;

}

{

    q=Query(field) <EOF>

    {

        return q;

    }

}

Query Query(String field) :

{

  List<BooleanClause> clauses = new ArrayList<BooleanClause>();

  Query q, firstQuery=null;

  int conj, mods;

}

{

  //查询语句开头是一个Modifier,可以为空

  //Modifier后面便是子语句clause,可以生成子查询语句q

  mods=Modifiers() q=Clause(field)

  {

    //如果第一个语句的Modifier是空,则将子查询q付给firstQuery,从后面我们可以看到,当只有一个查询语句的时候,如果其Modifier为空,则不返回BooleanQuery,而是返回子查询对象firstQuery。从这里我们可以看出,如果查询语句为"A",则生成TermQuery,其term为"A",如果查询语句为"+A",则生成BooleanQuery,其子查询只有一个,就是TermQuery,其term为"A"。

    addClause(clauses, CONJ_NONE, mods, q);

    if (mods == MOD_NONE)

        firstQuery=q;

  }

  (

    //除了第一个语句外,其他的前面可以有连接符,或为AND,或为OR。

    //如果在第一个语句之前出现连接符,则报错,如"OR a",会报Encountered " <OR> "OR "" at line 1, column 0.

    //除了连接符,也会有Modifier,后面是子语句clause,生成子查询q,并加入BooleanQuery中。

    conj=Conjunction() mods=Modifiers() q=Clause(field)

    { addClause(clauses, conj, mods, q); }

  )*

  {

    //如果只有一个查询语句,且其modifier为空,则返回firstQuery,否则由所有的子语句clause,生成BooleanQuery。

    if (clauses.size() == 1 && firstQuery != null)

      return firstQuery;

    else {

      return getBooleanQuery(clauses);

    }

  }

}

int Modifiers() : {

  //默认modifier为空,如果遇到+,就是required,如果遇到-或者NOT,就是prohibited。

  int ret = MOD_NONE;

}

{

  [

     <PLUS> { ret = MOD_REQ; }

     | <MINUS> { ret = MOD_NOT; }

     | <NOT> { ret = MOD_NOT; }

  ]

  { return ret; }

}

//连接符

int Conjunction() : {

  int ret = CONJ_NONE;

}

{

  [

    <AND> { ret = CONJ_AND; }

    | <OR>  { ret = CONJ_OR; }

  ]

  { return ret; }

}

 

(2) 一个子语句clause

由上面的分析我们可以知道,JavaCC使用的是编译原理里面的自上而下分析法,基本采用的是LL(1)的方法:

  • 第一个L :从左到右扫描输入串
  • 第二个L :生成的是最左推导
  • (1):向前看一个输入符号(lookahead)

JavaCC还提供LOOKAHEAD(n),也即当仅读入下一个符号时,不足以判断接下来的如何解析,会出现Choice Conflict,则需要多读入几个符号,来进一步判断。

 

Query Clause(String field) : {

  Query q;

  Token fieldToken=null, boost=null;

}

{

  //此处之所以向前看两个符号,就是当看到<TERM>的时候,不知道它是一个field,还是一个term,当<TERM><COLON>在一起的时候,说明<TERM>代表一个field, 否则代表一个term

  [

    LOOKAHEAD(2)

    (

    fieldToken=<TERM> <COLON> {field=discardEscapeChar(fieldToken.image);}

    | <STAR> <COLON> {field="*";}

    )

  ]

  (

  //或者是一个term,则由此term生成一个查询对象

   //或者是一个由括号括起来的子查询

   //()?表示可能存在一个boost,格式为^加一个数字

   q=Term(field)

   | <LPAREN> q=Query(field) <RPAREN> (<CARAT> boost=<NUMBER>)?

  )

  {

    //如果存在boost,则设定查询对象的boost

    if (boost != null) {

      float f = (float)1.0;

      try {

        f = Float.valueOf(boost.image).floatValue();

        q.setBoost(f);

      } catch (Exception ignored) { }

    }

    return q;

  }

}

 

Query Term(String field) : {

  Token term, boost=null, fuzzySlop=null, goop1, goop2;

  boolean prefix = false;

  boolean wildcard = false;

  boolean fuzzy = false;

  Query q;

}

{

  (

     (

      //如果term仅结尾包含*则是prefix查询。

       //如果以*开头,或者中间包含*,或者结尾包含*(如果仅结尾包含,则prefix优先)则为wildcard查询。

       term=<TERM>

       | term=<STAR> { wildcard=true; }

       | term=<PREFIXTERM> { prefix=true; }

       | term=<WILDTERM> { wildcard=true; }

       | term=<NUMBER>

     )

     //如果term后面是~,则是fuzzy查询

     [ fuzzySlop=<FUZZY_SLOP> { fuzzy=true; } ]

     [ <CARAT> boost=<NUMBER> [ fuzzySlop=<FUZZY_SLOP> { fuzzy=true; } ] ]

     {

        //如果是wildcard查询,则调用getWildcardQuery,

        //    *:*得到MatchAllDocsQuery,将返回所有的文档

        //    目前不支持最前面带通配符的查询(虽然词法分析和语法分析都能通过),否则报ParseException

        //    最后生成WildcardQuery

        //如果是prefix查询,则调用getPrefixQuery,生成PrefixQuery

        //如果是fuzzy查询,则调用getFuzzyQuery,生成FuzzyQuery

        //如果是普通查询,则调用getFieldQuery

       String termImage=discardEscapeChar(term.image);

       if (wildcard) {

         q = getWildcardQuery(field, termImage);

       } else if (prefix) {

         q = getPrefixQuery(field, discardEscapeChar(term.image.substring(0, term.image.length()-1)));

       } else if (fuzzy) {

         float fms = fuzzyMinSim;

         try {

           fms = Float.valueOf(fuzzySlop.image.substring(1)).floatValue();

         } catch (Exception ignored) { }

         if(fms < 0.0f || fms > 1.0f){

           throw new ParseException("Minimum similarity for a FuzzyQuery has to be between 0.0f and 1.0f !");

         }

         q = getFuzzyQuery(field, termImage,fms);

       } else {

         q = getFieldQuery(field, termImage);

       }

     }

     //包含边界的range查询,取得[goop1 TO goop2],调用getRangeQuery,生成TermRangeQuery

     | ( <RANGEIN_START> ( goop1=<RANGEIN_GOOP>|goop1=<RANGEIN_QUOTED> )

         [ <RANGEIN_TO> ] ( goop2=<RANGEIN_GOOP>|goop2=<RANGEIN_QUOTED> )

         <RANGEIN_END> )

       [ <CARAT> boost=<NUMBER> ]

        {

          if (goop1.kind == RANGEIN_QUOTED) {

            goop1.image = goop1.image.substring(1, goop1.image.length()-1);

          }

          if (goop2.kind == RANGEIN_QUOTED) {

            goop2.image = goop2.image.substring(1, goop2.image.length()-1);

          }

          q = getRangeQuery(field, discardEscapeChar(goop1.image), discardEscapeChar(goop2.image), true);

        }

     //不包含边界的range查询,取得{goop1 TO goop2},调用getRangeQuery,生成TermRangeQuery

     | ( <RANGEEX_START> ( goop1=<RANGEEX_GOOP>|goop1=<RANGEEX_QUOTED> )

         [ <RANGEEX_TO> ] ( goop2=<RANGEEX_GOOP>|goop2=<RANGEEX_QUOTED> )

         <RANGEEX_END> )

       [ <CARAT> boost=<NUMBER> ]

        {

          if (goop1.kind == RANGEEX_QUOTED) {

            goop1.image = goop1.image.substring(1, goop1.image.length()-1);

          }

          if (goop2.kind == RANGEEX_QUOTED) {

            goop2.image = goop2.image.substring(1, goop2.image.length()-1);

          }

          q = getRangeQuery(field, discardEscapeChar(goop1.image), discardEscapeChar(goop2.image), false);

        }

     //被""括起来的term,得到phrase查询,调用getFieldQuery

     | term=<QUOTED>

       [ fuzzySlop=<FUZZY_SLOP> ]

       [ <CARAT> boost=<NUMBER> ]

       {

         int s = phraseSlop;

         if (fuzzySlop != null) {

           try {

             s = Float.valueOf(fuzzySlop.image.substring(1)).intValue();

           }

           catch (Exception ignored) { }

         }

         q = getFieldQuery(field, discardEscapeChar(term.image.substring(1, term.image.length()-1)), s);

       }

  )

  {

    if (boost != null) {

      float f = (float) 1.0;

      try {

        f = Float.valueOf(boost.image).floatValue();

      }

      catch (Exception ignored) {

      }

      // avoid boosting null queries, such as those caused by stop words

      if (q != null) {

        q.setBoost(f);

      }

    }

    return q;

  }

}

 

此处需要详细解析的是getFieldQuery:

protected Query getFieldQuery(String field, String queryText)  throws ParseException {

  //需要用analyzer对文本进行分词

  TokenStream source;

  try {

    source = analyzer.reusableTokenStream(field, new StringReader(queryText));

    source.reset();

  } catch (IOException e) {

    source = analyzer.tokenStream(field, new StringReader(queryText));

  }

  CachingTokenFilter buffer = new CachingTokenFilter(source);

  TermAttribute termAtt = null;

  PositionIncrementAttribute posIncrAtt = null;

  int numTokens = 0;

  boolean success = false;

  try {

    buffer.reset();

    success = true;

  } catch (IOException e) {

  }

  //得到TermAttribute和PositionIncrementAttribute,此两项将决定到底产生什么样的Query对象

  if (success) {

    if (buffer.hasAttribute(TermAttribute.class)) {

      termAtt = buffer.getAttribute(TermAttribute.class);

    }

    if (buffer.hasAttribute(PositionIncrementAttribute.class)) {

      posIncrAtt = buffer.getAttribute(PositionIncrementAttribute.class);

    }

  }

  int positionCount = 0;

  boolean severalTokensAtSamePosition = false;

  boolean hasMoreTokens = false;

  if (termAtt != null) {

    try {

      //遍历分词后的所有Token,统计Tokens的个数numTokens,以及positionIncrement的总数,即positionCount。

      //当有一次positionIncrement为0的时候,severalTokensAtSamePosition设为true,表示有多个Token处在同一个位置。

      hasMoreTokens = buffer.incrementToken();

      while (hasMoreTokens) {

        numTokens++;

        int positionIncrement = (posIncrAtt != null) ? posIncrAtt.getPositionIncrement() : 1;

        if (positionIncrement != 0) {

          positionCount += positionIncrement;

        } else {

          severalTokensAtSamePosition = true;

        }

        hasMoreTokens = buffer.incrementToken();

      }

    } catch (IOException e) {

    }

  }

  try {

    //重设buffer,以便生成phrase查询的时候,term和position可以重新遍历。

    buffer.reset();

    source.close();

  }

  catch (IOException e) {

  }

  if (numTokens == 0)

    return null;

  else if (numTokens == 1) {

    //如果分词后只有一个Token,则生成TermQuery

    String term = null;

    try {

      boolean hasNext = buffer.incrementToken();

      term = termAtt.term();

    } catch (IOException e) {

    }

    return newTermQuery(new Term(field, term));

  } else {

   //如果分词后不只有一个Token

    if (severalTokensAtSamePosition) {

   //如果有多个Token处于同一个位置

      if (positionCount == 1) {

        //并且处于同一位置的Token还全部处于第一个位置,则生成BooleanQuery,处于同一位置的Token之间是OR的关系

        BooleanQuery q = newBooleanQuery(true);

        for (int i = 0; i < numTokens; i++) {

          String term = null;

          try {

            boolean hasNext = buffer.incrementToken();

            term = termAtt.term();

          } catch (IOException e) {

          }

          Query currentQuery = newTermQuery(new Term(field, term));

          q.add(currentQuery, BooleanClause.Occur.SHOULD);

        }

        return q;

      }

      else {

        //如果有多个Token处于同一位置,但不是第一个位置,则生成MultiPhraseQuery。

        //所谓MultiPhraseQuery即其可以包含多个phrase,其又一个ArrayList<Term[]> termArrays,每一项都是一个Term的数组,属于同一个数组的Term表示在同一个位置。它有函数void add(Term[] terms)一次添加一个数组的Term。比如我们要搜索"microsoft app*",其表示多个phrase,"microsoft apple","microsoft application"都算。此时用QueryParser.parse("/"microsoft app*/"")从而生成PhraseQuery是搜不出microsoft apple和microsoft application的,也不能搜出microsoft app,因为*一旦被引号所引,就不算通配符了。所以必须生成MultiPhraseQuery,首先用add(new Term[]{new Term("field", "microsoft")})将microsoft作为一个Term数组添加进去,然后用add(new Term[]{new Term("field", "app"), new Term("field", "apple"), new Term("field", "application")})作为一个Term数组添加进去(算作同一个位置的),则三者都能搜的出来。

        MultiPhraseQuery mpq = newMultiPhraseQuery();

        mpq.setSlop(phraseSlop);

        List<Term> multiTerms = new ArrayList<Term>();

        int position = -1;

        for (int i = 0; i < numTokens; i++) {

          String term = null;

          int positionIncrement = 1;

          try {

            boolean hasNext = buffer.incrementToken();

            assert hasNext == true;

            term = termAtt.term();

            if (posIncrAtt != null) {

              positionIncrement = posIncrAtt.getPositionIncrement();

            }

          } catch (IOException e) {

          }

          if (positionIncrement > 0 && multiTerms.size() > 0) {

            //如果positionIncrement大于零,说明此Term和前一个Term已经不是同一个位置了,所以原来收集在multiTerms中的Term都算作同一个位置,添加到MultiPhraseQuery中作为一项。并清除multiTerms,以便重新收集相同位置的Term。

            if (enablePositionIncrements) {

              mpq.add(multiTerms.toArray(new Term[0]),position);

            } else {

              mpq.add(multiTerms.toArray(new Term[0]));

            }

            multiTerms.clear();

          }

          //将此Term收集到multiTerms中。

          position += positionIncrement;

          multiTerms.add(new Term(field, term));

        }

        //当遍历完所有的Token,同处于最后一个位置的Term已经收集到multiTerms中了,把他们加到MultiPhraseQuery中作为一项。

        if (enablePositionIncrements) {

          mpq.add(multiTerms.toArray(new Term[0]),position);

        } else {

          mpq.add(multiTerms.toArray(new Term[0]));

        }

        return mpq;

      }

    }

    else {

      //如果不存在多个Token处于同一个位置的情况,则直接生成PhraseQuery

      PhraseQuery pq = newPhraseQuery();

      pq.setSlop(phraseSlop);

      int position = -1;

      for (int i = 0; i < numTokens; i++) {

        String term = null;

        int positionIncrement = 1;

        try {

          boolean hasNext = buffer.incrementToken();

          assert hasNext == true;

          term = termAtt.term();

          if (posIncrAtt != null) {

            positionIncrement = posIncrAtt.getPositionIncrement();

          }

        } catch (IOException e) {

        }

        if (enablePositionIncrements) {

          position += positionIncrement;

          pq.add(new Term(field, term),position);

        } else {

          pq.add(new Term(field, term));

        }

      }

      return pq;

    }

  }

}


你可能感兴趣的:(QueryParser)