- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- 李开复:苹果发布AI应用的未来
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
苹果,AI,应用,未来,深度学习,自然语言处理,计算机视觉1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,并开始渗透到人们生活的方方面面。从智能手机的语音助手到自动驾驶汽车,AI正在改变着我们的世界。作为科技巨头,苹果也积极布局AI领域,并将其融入到其产品和服务中。2017年,苹果发布了其首款AI芯片A11Bionic,并将其应用于iPhoneX等产品。该芯片拥有强大的神经网络处理能力,为
- 【CV】25.1.7 arxiv更新速递
hinmer
arxivCV每日更新python人工智能计算机视觉chatgpt目标检测aiAIGC
—第1篇----关键词:手势识别,计算机视觉,低光照条件,机器学习,RaspberryPi,OpenCV论文链接-摘要:手势识别是一种基于计算机视觉技术的感知用户界面,允许计算机将人类动作解释为命令,使用户无需使用手与计算机交流,从而使鼠标和键盘变得多余。手势识别的主要弱点是光线条件,因为手势控制依赖于摄像头。摄像头用于在2D和3D中解释手势,因此提取的信息可能因光源而异。系统的限制是无法在黑暗环
- 基于Hough变换与分数阶变分PDE的图像去雨算法实现(附带Matlab源码)
心之飞翼
算法matlab计算机视觉Matlab
基于Hough变换与分数阶变分PDE的图像去雨算法实现(附带Matlab源码)图像去雨是计算机视觉领域的一个重要问题,它的目标是从雨滴造成的图像中恢复出原始的清晰图像。本文将介绍一种基于Hough变换和分数阶变分PDE(PartialDifferentialEquation)的图像去雨算法,并提供相应的Matlab源代码。算法步骤如下:导入图像首先,我们需要导入包含雨滴的图像。可以使用Matlab
- PyTorch深度学习实战(43)——手写文本识别
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(43)——手写文本识别0.前言1.手写文本识别1.1基本概念1.2输入和输出格式1.3CTC损失值2.模型与数据集分析2.1数据集分析2.2模型分析3.实现手写文本识别模型小结系列链接0.前言手写文本识别,也称为手写文本的光学字符识别(OpticalCharacterRecognition,OCR),是计算机视觉和自然语言处理中的一项具有挑战性的任务。与印刷文本不同,手
- 【揭秘】图像算法工程师岗位如何进入?
认识祂
人工智能算法图像算法工程师
“图像算法工程师,主要专注于开发图像处理和计算机视觉算法,广泛应用于各行业。本文,我们来揭秘一下他们的日常工作,以及如何成为这一领域的专业人才。”01图像算法工程师的日常工作算法设计与开发图像算法工程师的核心任务是设计和开发算法,以解决特定的图像处理或计算机视觉问题。常见的任务包括:图像分类:使用卷积神经网络(CNN)对图像进行分类,常见算法如ResNet、VGG。目标检测:在图像中定位并标注物体
- 双足机器人开源项目
广州深情Yangy_Jiaojiao
机器人
双足机器人(也称为人形机器人或仿人机器人)是一个复杂的领域,涉及机械设计、电子工程、控制理论、计算机视觉等多个学科。对于想要探索或开发双足机器人的开发者来说,有许多开源项目可以提供帮助。这些项目通常包括硬件设计文件、固件代码以及高级软件框架,以实现运动控制、导航、感知等功能。双足机器人开源项目推荐1.OpenHumanoids简介:由GeorgiaTech的AMBER实验室开发的开源双足机器人平台
- 【机器学习实战入门】使用OpenCV进行性别和年龄检测
精通代码大仙
数据挖掘深度学习python机器学习pythonopencv数据挖掘人工智能
GenderandAgeDetectionPython项目首先,向您介绍用于此高级Python项目的性别和年龄检测中的术语:什么是计算机视觉?计算机视觉是一门让计算机能够像人类一样观察和识别数字图像和视频的学科。它面临的挑战大多源于对生物视觉有限的了解。计算机视觉涉及获取、处理、分析和理解数字图像,旨在从现实世界中提取高维数据,从而生成可用来做决策的符号或数值信息。该过程通常包括物体识别、视频跟踪
- 机器学习笔记 - 机器学习/深度学习实战案例合集
坐望云起
深度学习从入门到精通机器学习深度学习人工智能案例应用神经网络
一、简述如何学习机器学习/深度学习,理论和实践都很重要,理论上的内容需要看课程、读教材。但是实践需要自己动手,实践之后自然会对理论有更深入的理解。怎么实践?借用欧阳修《卖油翁》的话”无他,但手熟尔“。就是多看多写多跑。下面创建这个github的目的是为了存放一些图像处理/计算机视觉/机器学习/深度学习的示例代码集合,不定期会添加新的示例,可供参考。GitHub-bashendixie/ml_too
- Python自动化运维:一键掌控服务器的高效之道
蒙娜丽宁
Python杂谈运维python自动化
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在互联网和云计算高速发展的今天,服务器数量的指数增长使得手动运维和管理变得异常繁琐。Python凭借其强大的可读性和丰富的生态系统,成为实现自动化运维的理想语言。本文以“Python自动化运维:编写自动化脚本进行服务器管理”为主题,深入探讨了如何利用Py
- 基于C++和ONNX Runtime的YOLOv5目标检测实战
浪浪山小白兔
c++YOLO目标检测
1.前言在计算机视觉领域,目标检测是一项关键任务,其应用广泛,涵盖了安防监控、自动驾驶、工业检测等众多领域。YOLOv5作为一种先进的目标检测算法,以其速度快、精度高的特点备受关注。本文将详细介绍如何使用C++结合ONNXRuntime推理引擎来部署YOLOv5模型,实现高效的目标检测。2.ONNX与YOLOv52.1ONNX简介ONNX(OpenNeuralNetworkExchange)是一种
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 卷积调制空间自注意力SPATIALatt模型详解及代码复现
清风AI
深度学习人工智能python神经网络conda
背景与意义SPATIALaTT模型的提出源于对自注意力机制和卷积神经网络(CNN)的深入研究。在计算机视觉领域,CNN长期占据主导地位,而自注意力机制的引入为视觉任务带来了新的思路。SPATIALaTT模型的意义在于融合了这两种强大的特征提取方法,充分发挥了它们的优势。这种融合不仅提高了模型的性能,还为设计更高效的视觉模型提供了新的思路,推动了计算机视觉技术的发展。通过结合自注意力机制和卷积神经网
- 基于YOLOv5、YOLOv8和YOLOv10的机场安检行李检测:深度学习应用与实现
2025年数学建模美赛
YOLO深度学习人工智能目标跟踪目标检测
引言随着全球航空运输业的持续增长,机场的安全性变得越来越重要。机场安检作为航空安全的重要组成部分,主要负责对乘客和行李进行检查,防止危险物品进入机场或飞行器。传统的安检方式多依赖人工检查,效率低下且容易出错。因此,基于深度学习的自动化行李检测系统应运而生,通过计算机视觉技术,自动识别和分类行李中的物品,大大提高了安检的效率与准确性。YOLO(YouOnlyLookOnce)系列算法,由于其高效的目
- 【Python】深入探讨Python中的单例模式:元类与装饰器实现方式分析与代码示例
蒙娜丽宁
Python杂谈python单例模式开发语言
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界单例模式(SingletonPattern)是一种常见的设计模式,它确保一个类只有一个实例,并提供一个全局访问点。在Python中,实现单例模式的方式多种多样,包括基于装饰器、元类和模块级别的单例实现。本文将详细探讨这些实现方式,并通过大量代码示例进行演
- Python从0到100(八十三):神经网络-使用残差网络RESNET识别手写数字
是Dream呀
python神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 【人工智能】Python实战:构建高效的多任务学习模型
蒙娜丽宁
Python杂谈AI人工智能python学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界多任务学习(Multi-taskLearning,MTL)作为机器学习领域中的一种重要方法,通过在单一模型中同时学习多个相关任务,不仅能够提高模型的泛化能力,还能有效利用任务间的共享信息。本文深入探讨了多任务学习的基本概念、优势及其在实际应用中的重要性。
- 机器视觉在医疗影像分析中的应用:助力放射科医生精准诊断
人工智能专属驿站
大数据人工智能计算机视觉
在现代医疗领域,影像学检查如X光、CT扫描和MRI等是诊断疾病的重要手段。随着技术的不断发展,机器视觉算法在医疗影像分析中的应用日益广泛,为放射科医生提供了强大的辅助工具,极大地提高了诊断的准确性和效率。本文将探讨机器视觉在医疗影像分析中的具体应用及其对医疗诊断带来的变革。一、机器视觉算法简介机器视觉是一种模拟人类视觉的科学技术,通过图像处理、模式识别和计算机视觉等技术,使计算机能够“看”懂图像中
- 【计算机视觉】人脸识别
油泼辣子多加
计算机视觉计算机视觉opencv人工智能
一、简介人脸识别是将图像或者视频帧中的人脸与数据库中的人脸进行对比,判断输入人脸是否与数据库中的某一张人脸匹配,即判断输入人脸是谁或者判断输入人脸是否是数据库中的某个人。人脸识别属于1:N的比对,输入人脸身份是1,数据库人脸身份数量为N,一般应用在办公室门禁,疑犯追踪;人脸验证属于1:1的比对,输入人脸身份为1,数据库中为同一人的数据,在安全领域应用比较多。一个完整的人脸识别流程主要包括人脸检测、
- Python从0到100(七十三):Python OpenCV-OpenCV实现手势虚拟拖拽
是Dream呀
pythonopencv开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
- 【论文投稿】探秘计算机视觉算法:开启智能视觉新时代
小周不想卷
艾思科蓝学术会议投稿计算机视觉
目录引言一、计算机视觉算法基石:图像基础与预处理二、特征提取:视觉信息的精华萃取三、目标检测:从图像中精准定位目标四、图像分类:识别图像所属类别五、语义分割:理解图像的像素级语义六、计算机视觉算法前沿趋势与挑战引言在当今数字化浪潮中,计算机视觉宛如一颗璀璨的明珠,正深刻地改变着我们与世界的交互方式。从安防监控中的精准识别,到自动驾驶汽车的智能导航;从医疗影像的辅助诊断,到工业生产中的缺陷检测,计算
- 使用Llama 3.2-Vision多模态LLM与您的图像聊天
AI程序猿人
llamatransformerpytorch深度学习大模型应用人工智能大模型
介绍将视觉能力与大型语言模型(LLMs)结合的多模态LLM(MLLM)正在通过多模态LLM革命性地改变计算机视觉领域。这些模型结合了文本和视觉输入,展示了在图像理解和推理方面的出色能力。虽然这些模型以前只能通过API访问,但最近的开源选项现在允许本地执行,使其在生产环境中更具吸引力。在此教程中,我们将学习如何使用开源的Llama3.2-Vision模型与图像进行聊天,你会对其OCR、图像理解和推理
- AI大模型如何赋能电商行业,引领变革
虞书欣的C
人工智能开发语言
•个性化推荐:利用机器学习算法分析用户的历史购买记录、浏览行为和喜好,生成个性化的产品推荐列表,提升用户的购买意愿和满意度。•优化用户体验:•智能搜索引擎:运用自然语言处理技术,优化搜索引擎,让用户能够通过自然语言进行搜索。•虚拟客服:通过聊天机器人和语音助手,提供24/7的客户支持,快速解答用户咨询。•图像识别:利用计算机视觉技术,用户可以通过拍照识别商品,快速找到相似商品或进行排版搭配推荐。•
- 3d系统误差分析
Ai智享
结构光3d数码相机计算机视觉
系统标定重投影误差预估在计算机视觉和三维重建领域中,评估一个相机系统标定精度的重要指标。通过比较真实的三维点在图像中的投影位置与标定模型计算出的投影位置之间的差异,来衡量标定的准确性。以下是对这一概念的详细解析:什么是系统标定?系统标定(SystemCalibration)是指对一个视觉系统(例如单目相机、双目相机系统或结构光系统)进行参数标定的过程,包括:内参标定:相机的内部参数(如焦距、光心、
- YOLOv8与Transformer:探索目标检测的新架构
AI架构设计之禅
AI大模型应用入门实战与进阶大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
YOLOv8与Transformer:探索目标检测的新架构关键词:目标检测,深度学习,YOLOv8,Transformer,计算机视觉,卷积神经网络摘要:目标检测是计算机视觉领域的一项重要任务,其目标是从图像或视频中识别和定位特定对象。近年来,YOLO(YouOnlyLookOnce)系列算法以其高精度和高速度成为目标检测领域的佼佼者。最新版本的YOLOv8引入了Transformer架构,进一步
- 基于Spring Boot和Vue的人脸识别项目(源码)
AI人H哥会Java
JAVA大作业项目实战springbootvue.jsjava人工智能计算机视觉后端sql
背景随着人工智能技术的迅猛发展,生物识别技术的迅猛发展,人脸识别已经成为最具潜力的人工智能应用之一。它不仅在安全监控、金融支付、智能家居等多个领域得到了广泛应用,也逐渐进入日常生活场景。人脸识别作为一种生物特征识别技术,能够通过分析人脸图像中的特征点,实现对个体的身份识别。利用计算机视觉技术,系统能够快速从大量图片中定位并识别特定人脸,实现身份验证和信息检索。这一技术的应用,不仅提高了安全性,还提
- 图像生成大模型:Imagen 详解
转角再相遇
imagenpython深度学习计算机视觉
近年来,图像生成技术取得了显著进展,推动了计算机视觉和生成对抗网络(GAN)等领域的发展。Imagen是一个新兴的图像生成大模型,其在生成高质量、逼真图像方面表现出色。本文将详细讲解Imagen的基本原理、架构、训练流程及应用场景。1.Imagen的基本原理1.1什么是Imagen?Imagen是一种基于深度学习的图像生成模型,结合了自注意力机制(Self-attentionMechanism)和
- 计算机视觉与深度学习:使用深度学习训练基于视觉的车辆检测器(MATLAB源码-Faster R-CNN)
ZhShy23
javascript深度学习
在人工智能领域,计算机视觉是一个重要且充满活力的研究方向。它使计算机能够理解和分析图像和视频数据,从而做出有意义的决策。其中,目标检测是计算机视觉中的一项关键技术,它旨在识别并定位图像中的多个目标对象。车辆检测作为目标检测的一个重要应用,在自动驾驶、智能交通系统等领域有着广泛的应用前景。本文将介绍如何使用MATLAB和深度学习技术,特别是FasterR-CNN模型,来训练一个车辆检测器。文章目录一
- OpenCV计算机视觉 08 图像的旋转
伊一大数据&人工智能学习日志
OpenCV计算机视觉人工智能计算机视觉opencv
图像的旋转下面是一张小猪佩奇的照片,请进行顺时针90度,逆时针90度,180度旋转方法一:使用了NumPy库的np.rot90()函数来实现图像的旋转np.rot90(img,k=-1)表示将输入的图像img顺时针旋转90度,np.rot90(img,k=1)表示将图像逆时针旋转90度。importcv2importnumpyasnp#导入原图img=cv2.imread('小猪佩奇.png')
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST