贪心

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 定义
  • 解题的一般步骤
  • 例子


定义

贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。


解题的一般步骤

1.建立数学模型来描述问题;
2.把求解的问题分成若干个子问题;
3.对每一子问题求解,得到子问题的局部最优解;
4.把子问题的局部最优解合成原来问题的一个解。
如果比较了解动态规划,就会发现它们之间的相似之处。最优解问题大部分都可以拆分成一个个的子问题,把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。动态规划方法代表了这一类问题的一般解法,我们自底向上构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始,选择最优的路,一直走到底就可以了。

例子

活动选择问题:
有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi 。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。

代码:

#include  
#include   
#include   
using namespace std;      
int N;  
struct Act  
{
       
    int start;  
    int end;  
}act[100010];  
  
bool cmp(Act a,Act b)    
{
         
    return a.end<b.end;    
}   
  
int greedy_activity_selector()    
{
         
    int num=1,i=1;     
    for(int j=2;j<=N;j++)    
    {
         
        if(act[j].start>=act[i].end)    
        {
         
            i=j;    
            num++;    
        }    
    }    
    return num;  
}  
  
int main()    
{
         
    int t;  
    scanf("%d",&t);  
    while(t--)  
    {
       
        scanf("%d",&N);  
        for(int i=1;i<=N;i++)  
        {
       
            scanf("%lld %lld",&act[i].start,&act[i].end);  
        }  
        act[0].start=-1;  
        act[0].end=-1;  
        sort(act+1,act+N+1,cmp);   
        int res=greedy_activity_selector();  
        cout<<res<<endl;    
    }  
}

你可能感兴趣的:(算法)