归并排序与希尔排序学习笔记

希尔排序希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。希尔排序过程希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成):13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10
然后我们对每列进行排序:10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45
将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]。这时10已经移至正确位置了,然后再以3为步长进行排序:10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45
排序之后变为:10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94
最后以1步长进行排序(此时就是简单的插入排序了)
def shell_sort(alist):
n = len(alist)
# 初始步长
gap = n / 2
while gap > 0:
# 按步长进行插入排序
for i in range(gap, n):
j = i
# 插入排序
while j>=gap and alist[j-gap] > alist[j]:
alist[j-gap], alist[j] = alist[j], alist[j-gap]
j -= gap
# 得到新的步长
gap = gap / 2

alist = [54,26,93,17,77,31,44,55,20]
shell_sort(alist)
print(alist)

时间复杂度最优时间复杂度:根据步长序列的不同而不同最坏时间复杂度:O(n2)稳定想:不稳定
归并排序归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
def merge_sort(alist):
if len(alist) <= 1:
return alist
# 二分分解
num = len(alist)/2
left = merge_sort(alist[:num])
right = merge_sort(alist[num:])
# 合并
return merge(left,right)

def merge(left, right):
‘’‘合并操作,将两个有序数组left[]和right[]合并成一个大的有序数组’’’
#left与right的下标指针
l, r = 0, 0
result = []
while l if left[l] < right[r]:
result.append(left[l])
l += 1
else:
result.append(right[r])
r += 1
result += left[l:]
result += right[r:]
return result

alist = [54,26,93,17,77,31,44,55,20]
sorted_alist = mergeSort(alist)
print(sorted_alist)
时间复杂度最优时间复杂度:O(nlogn)最坏时间复杂度:O(nlogn)稳定性:稳定

你可能感兴趣的:(归并排序与希尔排序学习笔记)