导师安排做神经网络相关,在做优化神经网络时涉及到遗传算法,于是搜集资料,参照别人部分程序,初步完成遗传算法解决TSP问题。
“旅行商问题”(Traveling Salesman Problem,TSP)可简单描述为:一位销售商从n个城市中的某一城市出发,不重复地走完其余n-1个城市并回到原出发点,在所有可能路径中求出路径长度最短的一条。
旅行商的路线可以看作是对n城市所设计的一个环形,或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n-1)!个,因此解决这个问题需要O(n!)的计算时间。而由美国密执根大学的Holland教授发展起来的遗传算法,是一种求解问题的高效并行全局搜索方法,能够解决复杂的全局优化问题,解决TSP问题也成为遗传算法界的一个目标。
遗传算法具有广泛的应用领域,它借助于生物进化的思想和原理与计算机科学相结合,在解决实际问题中得到了很好的广泛应用。遗传算法一般由选择、交叉、变异构成。它通过不断地迭代,逐步改进当前解,直到最后搜索到最优解或满意解。算法流程图如下:
遗传算法求解TSP的基本步骤
(1) 种群初始化。个体编码方法有二进制编码和实数编码,在解决TSP问题过程中个体编码方法为实数编码。对于TSP问题,实数编码为1-n的实数的随机排列,初始化的参数有种群个数M、染色体基因个数N(即城市的个数)、迭代次数C、交叉概率Pc、变异概率Pmutation。
(2) 适应度函数。在TSP问题中,对于任意两个城市之间的距离D(i,j)已知,每个染色体(即n个城市的随机排列)可计算出总距离,因此可将一个随机全排列的总距离的倒数作为适应度函数,即距离越短,适应度函数越好,满足TSP要求。
(3) 选择操作。遗传算法选择操作有轮盘赌法、锦标赛法等多种方法,本程序采用基于适应度比例的选择策略,即适应度越好的个体被选择的概率越大,同时在选择中保存适应度最高的个体。
(4) 交叉操作。遗传算法中交叉操作有多种方法。本程序中对于个体,随机选择两个个体,在对应位置交换若干个基因片段,同时保证每个个体依然是1-n的随机排列,防止进入局部收敛。
(5) 变异操作。本程序中对于变异操作,随机选取个体,同时随机选取个体的两个基因进行交换以实现变异操作。
以下为选择N不同时对应的遗传算法所得到的最短距离连接图:
N=8时
在N=9以下时,计算机通过计算全排列得到的最优解和遗传算法得到的结果一致,而在N大于9时,计算机需要很长时间(等了几个小时都没计算出最优解),而遗传算法则可得到次优解或满意解。
MATLAB实现程序如下:
(1) 适应度函数fit.m
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m;
end
(2)个体距离计算函数 mylength.m
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end
end
(3)交叉操作函数 cross.m
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);
fprintf('p=%d ',p);
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end
end
(4)对调函数 exchange.m
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;
end
(5)变异函数 Mutation.m
function a=Mutation(A)
index1=0;index2=0;
nnper=randperm(size(A,2));
index1=nnper(1);
index2=nnper(2);
%fprintf('index1=%d ',index1);
%fprintf('index2=%d ',index2);
temp=0;
temp=A(index1);
A(index1)=A(index2);
A(index2)=temp;
a=A;
end
(6)连点画图函数 plot_route.m
function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy);
hold on;
end
end
(7)主函数
clear;
clc;
%%%%%%%%%%%%%%%输入参数%%%%%%%%
N=50; %%城市的个数
M=100; %%种群的个数
C=100; %%迭代次数
C_old=C;
m=2; %%适应值归一化淘汰加速指数
Pc=0.4; %%交叉概率
Pmutation=0.2; %%变异概率
%%生成城市的坐标
pos=randn(N,2);
%%生成城市之间距离矩阵
D=zeros(N,N);
for i=1:N
for j=i+1:N
dis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;
D(i,j)=dis^(0.5);
D(j,i)=D(i,j);
end
end
%%生成初始群体
popm=zeros(M,N);
for i=1:M
popm(i,:)=randperm(N);
end
%%随机选择一个种群
R=popm(1,:);
figure(1);
scatter(pos(:,1),pos(:,2),'rx');
axis([-3 3 -3 3]);
figure(2);
plot_route(pos,R); %%画出种群各城市之间的连线
axis([-3 3 -3 3]);
%%初始化种群及其适应函数
fitness=zeros(M,1);
len=zeros(M,1);
for i=1:M
len(i,1)=myLength(D,popm(i,:));
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
R=popm(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
fitness=fitness/sum(fitness);
distance_min=zeros(C+1,1); %%各次迭代的最小的种群的距离
while C>=0
fprintf('迭代第%d次\n',C);
%%选择操作
nn=0;
for i=1:size(popm,1)
len_1(i,1)=myLength(D,popm(i,:));
jc=rand*0.3;
for j=1:size(popm,1)
if fitness(j,1)>=jc
nn=nn+1;
popm_sel(nn,:)=popm(j,:);
break;
end
end
end
%%每次选择都保存最优的种群
popm_sel=popm_sel(1:nn,:);
[len_m len_index]=min(len_1);
popm_sel=[popm_sel;popm(len_index,:)];
%%交叉操作
nnper=randperm(nn);
A=popm_sel(nnper(1),:);
B=popm_sel(nnper(2),:);
for i=1:nn*Pc
[A,B]=cross(A,B);
popm_sel(nnper(1),:)=A;
popm_sel(nnper(2),:)=B;
end
%%变异操作
for i=1:nn
pick=rand;
while pick==0
pick=rand;
end
if pick<=Pmutation
popm_sel(i,:)=Mutation(popm_sel(i,:));
end
end
%%求适应度函数
NN=size(popm_sel,1);
len=zeros(NN,1);
for i=1:NN
len(i,1)=myLength(D,popm_sel(i,:));
end
maxlen=max(len);
minlen=min(len);
distance_min(C+1,1)=minlen;
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
fprintf('minlen=%d\n',minlen);
R=popm_sel(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
popm=[];
popm=popm_sel;
C=C-1;
%pause(1);
end
figure(3)
plot_route(pos,R);
axis([-3 3 -3 3]);