Xi Chen, Zuoxin Li, Ye Yuan, Gang Yu, Jianxin Shen, Donglian Qi
链接: arxiv.
指标:
J&F Jmean Fmean
DAVIS 16 83.1 82.6 83.6 39FPS
DAVIS 17 72.3 68.6 76.0 39FPS
J&F Js Juns Fs Funs
YTB-VOS 63.6 67.1 55.3 70.2 61.7
Andreas Robinson, Felix Jaremo Lawin, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg
链接: arxiv.
指标:
J&F Jmean Fmean
DAVIS 16 81.7 - - 21.9FPS use DAVIS 17
(with YTB) 83.5
DAVIS 17 68.8 - -
(with YTB) 76.7
J&F Js Juns Fs Fsean
YTB-VOS 72.1 72.3 65.9 76.2 74.1
Yizhuo Zhang, Zhirong Wu, Houwen Peng, Stephen Lin
链接: arxiv.
指标:
J&F Jmean Fmean
DAVIS 17 72.3 69.9 74.7 37FPS
J&F Js Juns Fs Fsean
YTB-VOS 67.8 67.1 63.0 69.4 71.6
(with DAVIS) 67.4 66.7 62.5 69.8 70.6
Xuhua Huang, Jiarui Xu, Yu-Wing Tai, Chi-Keung Tang
链接: arxiv.
指标:
J&F Jmean Fmean
DAVIS 17 75.9 72.3 79.4 0.14t/s no YTB
STM no YTB :71.6 with YTB:81.7
Xiankai Lu, Wenguan Wang, Jianbing Shen, Yu-Wing Tai, David J. Crandall, Steven C. H. Hoi
链接: arxiv.
指标:
Z-VOS:
J&F Jmean Fmean
DAVIS 16 - 58.0 51.5
DAVIS 17 37.3 35.0 39.6
Jmean
YTB-Obj 57.7
O-VOS
J&F Jmean Fmean
DAVIS 16 - 63.1 61.8
DAVIS 17 56.1 54.0 58.2
Gedas Bertasius, Lorenzo Torresani
链接: arxiv.
Mingjie Sun, Jimin Xiao, Eng Gee Lim, Bingfeng Zhang, Yao Zhao
链接: arxiv.
指标:
use first frame box-level ground-truth; no fine-tune
J&F Jmean Fmean
DAVIS 16 78.9 77.5 - 0.09t/s
DAVIS 17 70.6 69.1 -
Jmean
YTB-Obj 79.3
Jiaxu Miao, Yunchao Wei, Yi Yang
链接: arxiv.
指标:
(主要整理了一些关于Video Object Detection、Video Instance Segmentation和Video Captioning等分割相关的任务):
Xinkai Lu, Wenguan Wang, Martin Danelljan, Tianfei Zhou, Jianbing Shen, Luc Van Gool
链接: arxiv.
指标:
Z-VOS:use saliency dataset:MSRA10K,DUT; fine-tune on Davis16
J&F Jmean Fmean
DAVIS 16 - 82.5 81.2
Jmean
YTB-Obj 71.4
O-VOS:use saliency dataset:MSRA10K and semantic segmentation dataset:COCO;fine-tune on Davis17 and YTB-VOS
J&F Jmean Fmean
DAVIS 17 82.8 80.2 85.2 0.2s
J&F Js Juns Fs Fsean
YTB-VOS 80.2 80.7 74.0 85.1 80.9
Goutam Bhat, Felix Järemo Lawin, Martin Danelljan, Andreas Robinson, Michael Felsberg, Luc Van Gool, Radu Timofte
链接: arxiv.
指标:
O-VOS:Davis17 and YTB-VOS 6FPS
Backbone ResNet50 from Mask-RCNN weights size: 832 * 480
J&F Jmean Fmean
DAVIS 17 74.3 72.2 76.3
With additional data 81.6 79.1 84.1
J&F Js Juns Fs Funs
YTB-VOS 80.2 78.3 75.6 82.3 84.4
With additional data 81.5 80.4 76.4 84.9 84.4
Sucheng Ren, Chu Han, Xin Yang, Guoqiang Han, Shengfeng He
链接: arxiv.
指标:
Training with three datasets DUTS, DAVIS, DAVSOD
Spatial Excitation branch with images from DUTS and DAVIS,
Temporal Excitation branch with optical flow from DAVIS and DAVSOD
the whole model with video from DAVIS and DAVSOD
论文给出的是显著性检测指标,没有Davis的J和F指标
Zongxin Yang, Yunchao Wei, Yi Yang
链接: arxiv.
指标:
DeepLabv3+ architecture based on the dilated Resnet-101 as backbone apply batch normalization (BN) in our backbone and pre-train it on ImageNet and COCO.
Training data: Davis 2017 and YTB-VOS
with YTB: Use YTB-VOS training
with PRO:mutimulti-scale & flip strategy :
J&F Jmean Fmean
DAVIS 16 86.1 85.3 86.9 0.18t/s
(with YTB) 89.4 88.3 90.5
(with PRO) 90.7 89.6 91.7 9t/s
DAVIS 17 74.9 72.1 77.7
(with YTB) 81.9 79.1 84.6
(with PRO) 83.3 80.5 86.0
No fine-tuning at test time and no using simulated data in the training process
J&F Js Juns Fs Fsean
YTB-VOS 81.4 81.1 75.3 85.8 83.4
with mutimulti- 82.7 82.2 76.9 86.8 85.0
scale & flip strategy
Brent A. Griffin, Jason J. Corso
链接: arxiv.
Mingmin Zhen, Shiwei Li, Lei Zhou, Jiaxiang Shang, Haoan Feng, Tian Fang, Long Quan
链接: arxiv.
Training data:
backbone :DeepLabV3 Encoder
Image:MSRA10K, DUT;
Video:DAVIS16 DAVIS17 YTB-VOS
No fine-tuning at test time
J&F Jmean Fmean
DAVIS 16 - 83.4 81.8 0.04t/s
Fmean
FBMS 82.3
网络使用了额外的后处理里方法,follow了ICCV 19的andiff的后处理方法:
在Davis 16 80.4
+multiple scales 81.1
+I.Prun. 83.4
论文中还放了在Davis 16,FBMS,ViSal的显著性指标。
Hongje Seong, Junhyuk Hyun, Euntai Kim
链接: arxiv.
链接: 论文阅读.
Training data:
Image:MSRA10K, ECSSD, and HKU-IS;
Video:DAVIS16 DAVIS17 YTB-VOS
No online-learning strategy at test time
DAVIS 16 J&F Jmean Fmean
Static Images 74.8 74.7 74.8 0.12s
+Davis 16 87.6 87.1 88.1
+YTB-VOS 90.5 89.5 91.5
DAVIS 17 J&F Jmean Fmean
Static Images 68.9 67.1 70.8 0.12s
+Davis 16 76.0 74.2 77.8
+YTB-VOS 82.8 80.0 85.6
J&F Js Juns Fs Fsean
YTB-VOS 81.4 81.4 75.3 85.6 83.3
Yuk Heo, Yeong Jun Koh, Chang-Su Kim
链接: arxiv.
Seonguk Seo1,y, Joon-Young Lee2, and Bohyung Han1
链接: cvf.
链接: 论文阅读.
使用多模态信息,为视频分割数据集添加了caption,利用caption执行了分割。
Yu Li, Zhuoran Shen, Ying Shan
链接: arxiv.
链接: 论文阅读.
指标:
Training data:
Image:MSRA10K, ECSSD, and HKU-IS;
simulated video clips with frames generated by applying random transformation to static images.
Video:DAVIS16 DAVIS17 YTB-VOS
No fine-tuning at test time
J&F Jmean Fmean
DAVIS 16 86.6 87.6 85.7 0.04t/s
DAVIS 17 71.4 69.3 73.5
J&F Js Juns Fs Fsean
YTB-VOS 73.2 72.6 68.9 75.6 75.7
Sabarinath Mahadevan, Ali Athar, Aljoša Ošep, Sebastian Hennen, Laura Leal-Taixé, Bastian Leibe
链接: arxiv.
链接: 论文阅读.