pytorch实现
import torch.nn as nn
from scipy.sparse import csr
import pandas as pd
import numpy as np
import torch
from tqdm import tqdm
class FM_model(nn.Module):
def __init__(self,p,k):
super(FM_model,self).__init__()
self.p = p
self.k = k
self.linear = nn.Linear(self.p,1,bias=True)
self.v = nn.Parameter(torch.randn(self.k,self.p))
def fm_layer(self,x):
linear_part = self.linear(x)
inter_part1 = torch.mm(x,self.v.t())
inter_part2 = torch.mm(torch.pow(x,2),torch.pow(self.v,2).t())
output = linear_part + 0.5*torch.sum(torch.pow(inter_part1,2) - inter_part2)
return output
def forward(self,x):
output = self.fm_layer(x)
return output
def vectorize_dic(dic,ix=None,p=None,n=0,g=0):
"""
dic -- dictionary of feature lists. Keys are the name of features
ix -- index generator (default None)
p -- dimension of feature space (number of columns in the sparse matrix) (default None)
"""
if ix==None:
ix = dict()
nz = n * g
col_ix = np.empty(nz,dtype = int)
i = 0
for k,lis in dic.items():
for t in range(len(lis)):
ix[str(lis[t]) + str(k)] = ix.get(str(lis[t]) + str(k),0) + 1
col_ix[i+t*g] = ix[str(lis[t]) + str(k)]
i += 1
row_ix = np.repeat(np.arange(0,n),g)
data = np.ones(nz)
if p == None:
p = len(ix)
ixx = np.where(col_ix < p)
return csr.csr_matrix((data[ixx],(row_ix[ixx],col_ix[ixx])),shape=(n,p)),ix
def batcher(X_, y_=None, batch_size=-1):
n_samples = X_.shape[0]
if batch_size == -1:
batch_size = n_samples
if batch_size < 1:
raise ValueError('Parameter batch_size={} is unsupported'.format(batch_size))
for i in range(0, n_samples, batch_size):
upper_bound = min(i + batch_size, n_samples)
ret_x = X_[i:upper_bound]
ret_y = None
if y_ is not None:
ret_y = y_[i:i + batch_size]
yield (ret_x, ret_y)
if __name__ == "__main__":
cols = ['user','item','rating','timestamp']
train = pd.read_csv('data/ua.base', delimiter='\t', names = cols)
test = pd.read_csv('data/ua.test', delimiter='\t', names = cols)
x_train,ix = vectorize_dic({
'users':train['user'].values,
'items':train['item'].values},n=len(train.index),g=2)
x_test,ix = vectorize_dic({
'users':test['user'].values,
'items':test['item'].values},ix,x_train.shape[1],n=len(test.index),g=2)
y_train = train['rating'].values
y_test = test['rating'].values
x_train = x_train.todense()
x_test = x_test.todense()
print(x_train.shape)
print(x_test.shape)
n,p = x_train.shape
k = 10
batch_size=64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = FM_model(p, k).to(device)
loss_fn = nn.MSELoss()
optimer = torch.optim.SGD(model.parameters(), lr=0.0001, weight_decay=0.001)
epochs = 100
for epoch in range(epochs):
loss_epoch = 0.0
loss_all = 0.0
perm = np.random.permutation(x_train.shape[0])
model.train()
for x,y in tqdm(batcher(x_train[perm], y_train[perm], batch_size)):
model.zero_grad()
x = torch.as_tensor(np.array(x.tolist()), dtype=torch.float, device=device)
y = torch.as_tensor(np.array(y.tolist()), dtype=torch.float, device=device)
x = x.view(-1, p)
y = y.view(-1, 1)
preds = model(x)
loss = loss_fn(preds,y)
loss_all += loss.item()
loss.backward()
optimer.step()
loss_epoch = loss_all/len(x)
print(f"Epoch [{epoch}/{10}], "
f"Loss: {loss_epoch:.8f} ")
其它方法
from __future__ import division
from math import exp
from numpy import *
from random import normalvariate
from datetime import datetime
import pandas as pd
import numpy as np
trainData = r'./diabetes_train.txt'
testData = r'./diabetes_test.txt'
def preprocessData(data):
feature = np.array(data.iloc[:, :-1])
label = data.iloc[:, -1].map(lambda x: 1 if x == 1 else -1)
zmax, zmin = feature.max(axis=0), feature.min(axis=0)
feature = (feature - zmin) / (zmax - zmin)
label = np.array(label)
return feature, label
def sigmoid(inx):
return 1.0 / (1 + exp(-inx))
def SGD_FM(dataMatrix, classLabels, k, iter):
'''
:param dataMatrix: 特征矩阵
:param classLabels: 类别矩阵
:param k: 辅助向量的大小
:param iter: 迭代次数
:return:
'''
m, n = shape(dataMatrix)
alpha = 0.01
w = zeros((n, 1))
w_0 = 0.
v = normalvariate(0, 0.2) * ones((n, k))
for it in range(iter):
for x in range(m):
inter_1 = dataMatrix[x] * v
inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v)
interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2.
p = w_0 + dataMatrix[x] * w + interaction
loss = 1 - sigmoid(classLabels[x] * p[0, 0])
w_0 = w_0 + alpha * loss * classLabels[x]
for i in range(n):
if dataMatrix[x, i] != 0:
w[i, 0] = w[i, 0] + alpha * loss * classLabels[x] * dataMatrix[x, i]
for j in range(k):
v[i, j] = v[i, j] + alpha * loss * classLabels[x] * (
dataMatrix[x, i] * inter_1[0, j] - v[i, j] * dataMatrix[x, i] * dataMatrix[x, i])
print("第{}次迭代后的损失为{}".format(it, loss))
return w_0, w, v
def getAccuracy(dataMatrix, classLabels, w_0, w, v):
m, n = shape(dataMatrix)
allItem = 0
error = 0
result = []
for x in range(m):
allItem += 1
inter_1 = dataMatrix[x] * v
inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v)
interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2.
p = w_0 + dataMatrix[x] * w + interaction
pre = sigmoid(p[0, 0])
result.append(pre)
if pre < 0.5 and classLabels[x] == 1.0:
error += 1
elif pre >= 0.5 and classLabels[x] == -1.0:
error += 1
else:
continue
return float(error) / allItem
if __name__ == '__main__':
train = pd.read_csv(trainData)
test = pd.read_csv(testData)
dataTrain, labelTrain = preprocessData(train)
dataTest, labelTest = preprocessData(test)
date_startTrain = datetime.now()
print("开始训练")
w_0, w, v = SGD_FM(mat(dataTrain), labelTrain, 20, 200)
print(
"训练准确性为:%f" % (1 - getAccuracy(mat(dataTrain), labelTrain, w_0, w, v)))
date_endTrain = datetime.now()
print(
"训练用时为:%s" % (date_endTrain - date_startTrain))
print("开始测试")
print(
"测试准确性为:%f" % (1 - getAccuracy(mat(dataTest), labelTest, w_0, w, v)))