import requests
from lxml import etree
if __name__=="__main__":
url='https://jh.58.com/ershoufang/'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
}
response = requests.get(url=url,headers=headers).text
tree=etree.HTML(response)
li_list=tree.xpath('//ul[@class="house-list-wrap"]/li')
for li in li_list:
title=li.xpath('./div[2]/h2/a/text()')[0]
print(title)
import requests
from lxml import etree
headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
}
url='https://www.aqistudy.cn/historydata/'
page_text=requests.get(url=url,headers=headers).text
tree=etree.HTML(page_text)
hot_city=tree.xpath('//div[@class="bottom"]/ul/li/a/text()')
all_city=tree.xpath('//div[@class="bottom"]/ul/div[2]/li/a/text()')
print(hot_city)
import requests
from lxml import etree
import os
dirname='star1'
if not os.path.exists(dirname):
os.mkdir(dirname)
url='http://pic.netbian.com/4kmingxing/index_%d.html'#爬取多页内容
for i in range(1,6):
if i==1:
new_url='http://pic.netbian.com/4kmingxing/'
else:
new_url=format(url%i)
#url='http://pic.netbian.com/4kmingxing/'爬取一页的内容
headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
}
response=requests.get(url=new_url,headers=headers)
response.encoding='gbk'
page_text=response.text
tree=etree.HTML(page_text)
li_list=tree.xpath('//div[@class="slist"]/ul/li')
for li in li_list:
title=li.xpath('./a/img/@alt')[0]+'.jpg'
img_src='http://pic.netbian.com'+li.xpath('./a/img/@src')[0]
img_data=requests.get(url=img_src,headers=headers).content
imgpath=dirname+'/'+title
with open(imgpath,'wb') as fp:
fp.write(img_data)
print(title,'保存成功!')
#示例一
'''import asyncio
async def func():
print("请稍后...")
response=await asyncio.sleep(2)
print("欢迎",response)
asyncio.run(func())'''
#示例二
'''import asyncio
async def others():
print("start")
await asyncio.sleep(2)
print("end")
return "返回值"
async def func():
print("执行协程函数内部代码")
response=await others()
print("IO请求结束,结果为:",response)
asyncio.run(func())'''
#示例三
import asyncio
async def others():
print("start")
await asyncio.sleep(2)
print("end")
return "返回值"
async def func():
print("执行协程函数内部代码")
response1=await others()
print("IO请求结束,结果为:",response1)
response2 = await others()
print("IO请求结束,结果为:", response2)
asyncio.run(func())
import asyncio
import time
async def get_request(url):
print("正在请求:",url)
time.sleep(2)
print("请求已完成!")
return 'jackson'
def back(t):
#result返回的就是特殊函数的返回值
print('t.result返回的是:',t.result())
if __name__=="__main__":
#这是一个协程对象
c=get_request('www.baidu.com')
#任务对象就是对协程的进一步封装
task=asyncio.ensure_future(c)
#绑定一个回调函数
task.add_done_callback(back)
#创建事件循环对象
loop=asyncio.get_event_loop()
#将任务对象注册到事件循环中且开启事件循环
loop.run_until_complete(task)
'''import asyncio
async def func():
print(1)
await asyncio.sleep(2)
print(2)
return "返回值"
async def main():
print("main开始")
task1=asyncio.create_task(func())
task2=asyncio.create_task(func())
print("main结束")
re1=await task1
re2=await task2
print(re1,re2)
asyncio.run(main())'''
import asyncio
async def func():
print(1)
await asyncio.sleep(2)
print(2)
return "返回值"
async def main():
print("mian开始")
task_list=[
asyncio.create_task(func()),
asyncio.create_task(func())
]
print("main结束")
result=await asyncio.wait(task_list)
print(result)
asyncio.run(main())
from greenlet import greenlet
def func1():
print(1)
res2.switch()
print(2)
res2.switch()
def func2():
print(3)
res1.switch()
print(4)
res1=greenlet(func1)
res2=greenlet(func2)
res1.switch()
def func1():
yield 1
yield from func2()
yield 2
def func2():
yield 3
yield 4
f1=func1()
for item in f1:
print(item)
import asyncio
import time
'''async def get_request(url):
print("正在请求:",url)
time.sleep(2)#time是不支持异步模块的代码
print("请求已完成!")
return 'jackson'
'''
async def get_request(url):
print("正在请求:",url)
await asyncio.sleep(2)#支持异步模块的代码
print("请求已完成!")
return 'jackson'
def back(t):
#result返回的就是特殊函数的返回值
print('t.result返回的是:',t.result())
urls=[
'www.baidu1.0.com',
'www.baidu2.0.com',
'www.baidu3.0.com'
]
if __name__=="__main__":
start=time.time()
tasks=[]
#创建协程对象
for url in urls:
c=get_request(url)
#创建任务对象
task=asyncio.ensure_future(c)
task.add_done_callback(back)
tasks.append(task)
#创建事件循环对象
loop=asyncio.get_event_loop()
#loop.run_until_complete(tasks)
#必须使用wait对tasks进行封装才能执行成功
loop.run_until_complete(asyncio.wait(tasks))
print("总耗时:", time.time() - start)
import asyncio
import time
import aiohttp
urls=[
'http://127.0.0.1:8000/jackson',
'http://127.0.0.1:8000/jing',
'http://127.0.0.1:8000/jack',
]
'''async def get_request(url):
#requests是一个不支持异步的模块
page_text=requests.get(url=url).text
return page_text
'''
async def get_request(url):
#实例化好一个请求对象
async with aiohttp.ClientSession() as se:
#调用get发起请求,返回一个响应对象
async with await se.get(url=url) as response:
#获取字符串形式的响应数据
page_text=await response.text()
return page_text
if __name__=="__main__":
start = time.time()
tasks = []
# 创建协程对象
for url in urls:
c = get_request(url)
# 创建任务对象
task = asyncio.ensure_future(c)
tasks.append(task)
# 创建事件循环对象
loop = asyncio.get_event_loop()
# loop.run_until_complete(tasks)
# 必须使用wait对tasks进行封装才能执行成功
loop.run_until_complete(asyncio.wait(tasks))
print("总耗时:", time.time() - start)
import requests
from lxml import etree
import re
from multiprocessing.dummy import Pool
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
}
url='https://www.pearvideo.com/category_5'
response = requests.get(url=url,headers=headers).text
tree=etree.HTML(response)
li_list=tree.xpath('//ul[@id="listvideoListUl"]/li')
urls=[]#存储所有视频的链接和名字
for li in li_list:
detail_url='https://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
name=li.xpath('./div/a/div[2]/text()')[0]+'.MP4'
#对详情页的url发起请求
detail_response=requests.get(url=detail_url,headers=headers).text
#从详情页中解析出视频的地址(url)
ex='srcUrl="(.*?)",vdoUrl'
video_url=re.findall(ex,detail_response)[0]
dic={
'name':name,
'url':video_url
}
urls.append(dic)
#对视频链接发起请求获取视频的二进制数据,然后将视频数据进行返回
def get_video_data(dic):
url=dic['url']
print(dic['name'],'正在下载...')
data=requests.get(url=url,headers=headers).content
#持久化存储操作
with open(dic['name'],'wb') as fp:
fp.write(data)
print(dic['name'],'下载完成')
#使用线程池对视频数据进行请求(较为耗时的阻塞操作)
pool=Pool(4)
pool.map(get_video_data,urls)
pool.close()
pool.join()
from selenium import webdriver
import time
#导入动作链对应的类
from selenium.webdriver import ActionChains
bro=webdriver.Chrome(executable_path='E:/firefoxdownloads/chromedriver.exe')
bro.get('https://www.runoob.com/try/try.php?filename=jqueryui-api-droppable')
#如果定位的标签是存在于iframe标签中的则必须进行标签定位
bro.switch_to.frame('iframeResult')#切换浏览器定位的作用域
div=bro.find_element_by_id('draggable')
#动作链
action=ActionChains(bro)
#点击长按指定的标签
action.click_and_hold(div)
for i in range(5):
#perform立即执行动作链操作
#move_by_offset(x,y)
action.move_by_offset(20,0).perform()
time.sleep(0.3)
#释放动作链
action.release()
bro.quit()
from selenium import webdriver
import time
#基于浏览器的驱动程序实例化一个浏览器对象
bro=webdriver.Chrome(executable_path='E:/firefoxdownloads/chromedriver.exe')
#对目的网站发起请求
bro.get('https://www.jd.com')
#标签定位
search_text=bro.find_element_by_xpath('//*[@id="key"]')
#标签交互
search_text.send_keys('iphone11')
#点击搜索按钮
bth=bro.find_element_by_xpath('//*[@id="search"]/div/div[2]/button')
bth.click()
time.sleep(2)
#在搜索结果页面进行滚轮向下滑动的操作(执行js操作:js注入)
bro.execute_script('window.scrollTo(0,document.body.scrollHeight)')
time.sleep(2)
bro.get('https://www.baidu.com')
time.sleep(2)
#回退
bro.back()
time.sleep(2)
#前进
bro.forward()
bro.quit()
from selenium import webdriver
import time
from selenium.webdriver import ActionChains
bro=webdriver.Chrome(executable_path='E:/firefoxdownloads/chromedriver.exe')
bro.get('https://qzone.qq.com/')
bro.switch_to.frame('login_frame')
a_tag=bro.find_element_by_id('switcher_plogin')
a_tag.click()
username=bro.find_element_by_id('u')
password=bro.find_element_by_id('p')
time.sleep(2)
username.send_keys('')
time.sleep(2)
password.send_keys('')
time.sleep(2)
btn=bro.find_element_by_id('login_button')
btn.click()
time.sleep(2)
bro.quit()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TvOX2w28-1603003392292)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20200824094432380.png)]
import scrapy
class QiubaiSpider(scrapy.Spider):
name = 'qiubai'
#allowed_domains = ['www.xxx.com']
start_urls = ['https://www.qiushibaike.com/text/']
def parse(self, response):
#解析:作者的名称+段子内容
div_list=response.xpath('//div[@class="col1 old-style-col1"]/div')
all_data=[]#存储所有解析到的数据
for div in div_list:
#xpath返回的是列表,但列表元素一定是selector类型的对象
#extract可以将selector对象中data参数存储的字符串提取出来
author=div.xpath('./div[1]/a[2]/h2/text()')[0].extract()
#列表调用了extract之后,则表示将列表中每一个selector对象中data对应的字符串提取出来
content=div.xpath('./a[1]/div/span//text()').extract()
content=''.join(content)#转为字符串类型
dic={
'author':author,
'content':content
}
all_data.append(dic)
return all_data
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
ROBOTSTXT_OBEY = False
LOG_LEVEL='ERROR'
import scrapy
from qiubaipro.items import QiubaiproItem
class QiubaiSpider(scrapy.Spider):
name = 'qiubai'
#allowed_domains = ['www.xxx.com']
start_urls = ['https://www.qiushibaike.com/text/']
def parse(self, response):
#解析:作者的名称+段子内容
div_list=response.xpath('//div[@class="col1 old-style-col1"]/div')
all_data=[]#存储所有解析到的数据
for div in div_list:
#xpath返回的是列表,但列表元素一定是selector类型的对象
#extract可以将selector对象中data参数存储的字符串提取出来
author=div.xpath('./div[1]/a[2]/h2/text()')[0].extract()
#列表调用了extract之后,则表示将列表中每一个selector对象中data对应的字符串提取出来
content=div.xpath('./a[1]/div/span//text()').extract()
content=''.join(content)#转为字符串类型
item=QiubaiproItem()
item['author']=author
item['content']=content
yield item#将item提交给管道
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class QiubaiproItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
author=scrapy.Field()
content=scrapy.Field()
#pass
# Scrapy settings for qiubaipro project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
# https://docs.scrapy.org/en/latest/topics/settings.html
# https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
BOT_NAME = 'qiubaipro'
SPIDER_MODULES = ['qiubaipro.spiders']
NEWSPIDER_MODULE = 'qiubaipro.spiders'
pipeline.html
ITEM_PIPELINES = {
'qiubaipro.pipelines.QiubaiproPipeline': 300,
}
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
class QiubaiproPipeline:
fp=None
#重写父类的一个方法:该方法只在开始爬虫的时候调用一次
def open_spider(self,spider):
print("开始爬虫...")
self.fp=open('./qiubai.txt','w',encoding='utf-8')
#专门用来处理item类型对象
#该方法可以接收爬虫文件提交过来的item对象
#该方法每接收到一个item就会被调用一次
def process_item(self, item, spider):
author=item['author']
content=item['content']
self.fp.write(author+':'+content+'\n')
return item
def close_spider(self,spider):
print("结束爬虫!")
self.fp.close()
import scrapy
from imgpro.items import ImgproItem
class ImgSpider(scrapy.Spider):
name = 'img'
#allowed_domains = ['www.xxx.com']
start_urls = ['http://sc.chinaz.com/tupian/']
def parse(self, response):
div_list=response.xpath('//div[@id="container"]/div')
for div in div_list:
#使用伪属性,只有滑动才能显示src,本身为src2
src=div.xpath('./div/a/img/@src2').extract_first()
item=ImgproItem()
item['src']=src
yield item
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class ImgproItem(scrapy.Item):
# define the fields for your item here like:
src = scrapy.Field()
pass
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
ROBOTSTXT_OBEY = False
LOG_LEVEL='ERROR'
#指定图片存储目录
IMAGES_STORE='./imgs'
https://docs.scrapy.org/en/latest/topics/extensions.html
#需要改变pipelines.py文件指定的imgpipeline
ITEM_PIPELINES = {
'imgpro.pipelines.imgpipeline': 300,
}
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
# class ImgproPipeline:
# def process_item(self, item, spider):
# return item
from scrapy.pipelines.images import ImagesPipeline
import scrapy
class imgpipeline(ImagesPipeline):
#可以根据图片地址进行图片数据的请求
def get_media_requests(self, item, info):
yield scrapy.Request(item['src'])
#指定图片存储的路径
def file_path(self, request, response=None, info=None):
imgname=request.url.split('/')[-1]
return imgname
def item_completed(self, results, item, info):
return item #返回下一个即将执行的管道类
import scrapy
from selenium import webdriver
from wangyipro.items import WangyiproItem
class WangyiSpider(scrapy.Spider):
name = 'wangyi'
#allowed_domains = ['www.xxx.com']
start_urls = ['https://news.163.com/']
models_url=[]#存储五个板块对应的url
#解析五大板块对应的详情页url
def __init__(self):
self.bro=webdriver.Chrome(executable_path='E:/firefoxdownloads/chromedriver.exe')
def parse(self, response):
li_list=response.xpath('//*[@id="index2016_wrap"]/div[1]/div[2]/div[2]/div[2]/div[2]/div/ul/li')
alist=[3,4,6,7,8]
for index in alist:
model_url=li_list[index].xpath('./a/@href').extract_first()
self.models_url.append(model_url)
#依次对每一个板块对应的页面进行请求
for url in self.models_url:#对每一个板块的url进行请求发送
yield scrapy.Request(url,callback=self.parse_model)
#每一个板块对应的新闻标题相关的内容都是动态加载的
def parse_model(self,response):
#解析每一个板块对应新闻的标题和新闻详情页url
div_list=response.xpath('/html/body/div/div[3]/div[4]/div[1]/div/div/ul/li/div/div')
for div in div_list:
title=div.xpath('./div/div[1]/h3/a/text()').extract_first()
new_detail_url=div.xpath('./div/div[1]/h3/a/@href').extract_first()
item=WangyiproItem()
item['title']=title
#对新闻详情页的url发起请求
yield scrapy.Request(url=new_detail_url,callback=self.parse_detail,meta={
'item':item})
def parse_detail(self,response):#解析新闻内容
content=response.xpath('//*[@id="endText"]//text()').extract()
content=''.join(content)
item=response.meta['item']
item['content']=content
yield item
def closed(self,spider):
self.bro.quit()
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
class WangyiproPipeline:
def process_item(self, item, spider):
print(item)
return item
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class WangyiproItem(scrapy.Item):
# define the fields for your item here like:
title = scrapy.Field()
content = scrapy.Field()
# Define here the models for your spider middleware
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
from scrapy import signals
# useful for handling different item types with a single interface
from itemadapter import is_item, ItemAdapter
from scrapy.http import HtmlResponse
from time import sleep
class WangyiproDownloaderMiddleware:
# Not all methods need to be defined. If a method is not defined,
# scrapy acts as if the downloader middleware does not modify the
# passed objects.
def process_request(self, request, spider):
# Called for each request that goes through the downloader
# middleware.
# Must either:
# - return None: continue processing this request
# - or return a Response object
# - or return a Request object
# - or raise IgnoreRequest: process_exception() methods of
# installed downloader middleware will be called
return None
#该方法拦截五大板块对应的响应对象进行篡改
def process_response(self, request, response, spider):#spider爬虫对象
bro=spider.bro #获取在爬虫中定义的浏览器对象
#挑选出指定的响应对象进行篡改,通过url制定request,再通过request制定response
if request.url in spider.models_url:
bro.get(request.url)#五个板块对应的url进行请求
sleep(2)
page_text=bro.page_source #包含了动态加载的新闻数据
#response #五大板块对应的响应对象
#针对定位到的这些response进行篡改
#实例化一个新的响应对象(符合需求:包含动态加载出的新闻数据),代替原来旧的响应对象
#如何获取动态加载出的新闻数据?
new_response=HtmlResponse(url=request.url,body=page_text,encoding='utf-8',request=request)
return new_response
else:
#response #其他请求对应的响应对象
return response
def process_exception(self, request, exception, spider):
# Called when a download handler or a process_request()
# (from other downloader middleware) raises an exception.
# Must either:
# - return None: continue processing this exception
# - return a Response object: stops process_exception() chain
# - return a Request object: stops process_exception() chain
pass
BOT_NAME = 'wangyipro'
SPIDER_MODULES = ['wangyipro.spiders']
NEWSPIDER_MODULE = 'wangyipro.spiders'
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36'
ROBOTSTXT_OBEY = False
LOG_LEVEL='ERROR'
DOWNLOADER_MIDDLEWARES = {
'wangyipro.middlewares.WangyiproDownloaderMiddleware': 543,
}
ITEM_PIPELINES = {
'wangyipro.pipelines.WangyiproPipeline': 300,
}