《深度学习的数学》(https://www.ituring.com.cn/book/2593)第五章实例用Excel体验卷积神经网络——python实现

所使用的的数据连接:https://www.ituring.com.cn/book/download/d16bf588-375b-4176-b319-ec3c3a2d99a1
原书网址
计算过程如下:

import pandas, numpy
global seed

def get_npdata():
    file = r'D:\ChromeCoreDownloads\【Excel示例文件】深度学习的数学\附录B.xlsx'
    data = pandas.read_excel(file, sheet_name='Data', engine='openpyxl')
    df = pandas.DataFrame(data)
    # 通过切片,去除部分没有意义的行和列
    df = df.iloc[1:10, 11:587]
    # 将待识别数据转换为结构为(96, 6, 6)numpy数组np_data, 将正解存储在(95x3)的矩阵value中(准确的说是DataFrame中)
    for i in range(0, 571, 6):
        df1 = df.iloc[:, i:i+6]
        if i == 0:
            value = numpy.array(df1.iloc[6:, i])
            value = pandas.DataFrame(value).transpose()
        else:
            value.loc[len(value)] = numpy.array(df1.iloc[6:, 0])
        df1 = df1.iloc[:6, :]
        if i == 0:
            # 将一个待识别的数字的矩阵(6x6)表示作为一个np_data的一个元素
            np_data = numpy.array([numpy.array(df1)])
        else:
            np_data_temp = numpy.array([numpy.array(df1)])
            np_data = numpy.concatenate((np_data, np_data_temp))
    value = numpy.array(value)
    return np_data, value


def convo_cal(np_data, fil, bf):
    """计算卷积结果(供convo_layer_out调用)
    """
    i = j = 0
    while i+3 <= np_data.shape[0]:
        while j+3 <= np_data.shape[1]:
            # 截取(3,3)矩阵
            x = np_data[i:i+3, j:j+3]
            # 两矩阵(3x3)相同位置相乘, 结果求和,加上偏置,就是卷积层的输入
            z = numpy.sum(x * fil) + bf
            # sigmoid激活函数y(x), 得到输出a
            a = 1/(1 + numpy.exp(-1*z))
            if j == 0:
                temp = numpy.array([a])
            else:
                temp = numpy.append(temp, a)
            j += 1
        if i == 0:
            convo_cal_return = numpy.array([temp])
        else:
            convo_cal_return = numpy.concatenate((convo_cal_return, [temp]))
        i += 1
        j = 0
    return convo_cal_return


def convo_layer_out(np_data):
    """本函数计算卷积层输出"""
    # 接下来计算卷积层, 先要随机3个(3,3)过滤器及3个偏置bf
    numpy.random.seed(seed)
    f1 = numpy.random.randn(3, 3)
    f2 = numpy.random.randn(3, 3)
    f3 = numpy.random.randn(3, 3)
    bf1, bf2, bf3 = numpy.random.randn(3)
    # 使用书本提供的数据验证
    # f1, f2, f3, bf = set_para_standard()
    # bf1, bf2, bf3 = bf
    # 将卷积层的输出整理成一个矩阵(96x3x4x4)
    flag = 0
    for pic in np_data:
        # 每张相片需经三个过滤器处理。
        for f, b in zip([f1, f2, f3], [bf1, bf2, bf3]):
            temp = convo_cal(pic, f, b)
            if f is f1:
                picfill = numpy.array([temp])
            else:
                picfill = numpy.concatenate((picfill, [temp]))
        if flag == 0:
            result = numpy.array(([picfill]))
            flag += 1
        else:
            result = numpy.concatenate((result, [picfill]))
    return result


def pooling_out(convo_out):
    """本函数计算池化层输出"""
    # 将(4x4)矩阵划分为4个(2x2)矩阵
    # 设置flag 用于判断是否为第一张图片
    flag = 0
    for pic in convo_out:
        # 设置subflag用于判断是否为第一个元素
        subflag = 0
        for fil in pic:
            filhalf = numpy.hsplit(fil, 2)
            for f in filhalf:
                filquater = numpy.vsplit(f, 2)
                for pice in filquater:
                    if subflag == 0:
                        picpooling = numpy.array([numpy.max(pice)])
                        subflag = 1
                    else:
                        picpooling = numpy.append(picpooling, [numpy.max(pice)])
        # 因为图片三个过滤器池化的数据合并在一起,得到一个(1x12)的矩阵,将图片三个过滤器的池化输出,整理为3x4的矩阵
        picpooling = numpy.hsplit(picpooling, 3)
        picpooling = numpy.array(picpooling)
        # 将96张图片数据合并为一个(96x3x4)矩阵
        if flag == 0:
            poolingout = numpy.array([picpooling])
            flag = 1
        else:
            poolingout = numpy.concatenate((poolingout, [picpooling]))
    # print(poolingout.shape)
    return poolingout


def last_layer_out(poolingout):
    """结果输出"""
    # 随机(服从正态分布)的参数
    numpy.random.seed(seed)
    w1 = numpy.random.randn(3, 4)
    w2 = numpy.random.randn(3, 4)
    w3 = numpy.random.randn(3, 4)
    bo = numpy.random.randn(3)
    # 使用书本提供的数据验证
    # w1, w2, w3, bo = set_outlayer_para()
    allout = []
    for pic in poolingout:
        flag = 0
        for w, b in zip([w1, w2, w3], bo):
            subflag = 0
            for d, wi in zip(pic, w):
                if subflag == 0:
                    zpicece = numpy.dot(d, wi)
                    subflag = 1
                else:
                    zpicece += numpy.dot(d, wi)
            zpicece = zpicece + b
            apicece = 1/(1+numpy.exp(-1*zpicece))
            if flag == 0:
                a = numpy.array([[apicece]])
                flag = 1
            else:
                a = numpy.append(a, [apicece])
        allout.append(a)
    allout = numpy.array(allout)
    return allout


def cost_function(out, value):
    """求代价函数"""
    c = 0
    for o, v in zip(out, value):
        c += numpy.sum(1/2*(o-v)**2)


def test():
    global seed
    seed = 16
    np_data, value = get_npdata()
    # 计算卷积层输出
    convo_out = convo_layer_out(np_data)
    # 计算池化层输出
    poolingout = pooling_out(convo_out)
    # 计算输出层输出
    out = last_layer_out(poolingout)
    # 求代价函数
    c = cost_function(out, value)
    print(c)


def check():
    global seed
    seed = 16
    np_data, value = get_npdata()
    testdata = np_data[0]
    testdata[0][2] = 1
    testdata[0][4] = 1
    testdata[5][2] = 1
    testdata[5][4] = 1
    testdata = numpy.array([testdata])
    # 计算卷积层输出
    convo_out = convo_layer_out(testdata)
    # 计算池化层输出
    poolingout = pooling_out(convo_out)
    # 计算输出层输出
    out = last_layer_out(poolingout)
    return out


out = check()
print(out)
print('number is :', list(out[0]).index(numpy.max(out[0]))+1)

我们还是通过更改seed(i)的i值,从而估计出最佳的参数。可以用下面的函数实现

def guess_para():
    global seed
    f = []
    g = []
    for i in range(10000):
        seed = i
        # 获取数据
        np_data, value = get_npdata()
        # 计算卷积层输出
        convo_out = convo_layer_out(np_data)
        # 计算池化层输出
        poolingout = pooling_out(convo_out)
        # 计算输出层输出
        out = last_layer_out(poolingout)
        # 求代价函数
        c = cost_function(out, value)
        print(c, seed)
        if c < 50:
            f.append((seed, c))
            g.append(c)
    index = g.index(min(g))
    print('best seed is :', f[index][0])

100以内最佳的seed值是16, 代价函数的值为34.
验证是只需将验证数据设置为(1x6x6)矩阵,并赋值给np_data
根据输出层输出的最大的值在数组中的位置加一,即为判断判定结果。
以下使用书本提供的参数验证计算过程是正确的。

# 使用书本提供的数据验证
def set_para_standard():
    f1 = numpy.array([[1.161, -0.848, 1.356], [5.825, -14.571, -6.945], [4.387, 8.317, 1.214]])
    f2 = numpy.array([[1.950, 14.210, 5.029], [4.344, -1.471, -12.478], [-1.346, -5.859, -2.408]])
    f3 = numpy.array([[-0.785, 4.159, -0.542], [0.468, -8.465, -4.508], [0.183, -2.567, 0.231]])
    bf = [-14.706, -13.572, -4.879]
    return f1, f2, f3, bf


def set_outlayer_para():
    w1 = numpy.array([[-0.317, -3.223, 0.151, 1.323], [-25.877, 0.402, -0.494, -1.571], [-3.661, 0.009, 1.908, -0.159]])
    w2 = numpy.array([[0.010, -11.069, -0.642, 9.001], [12.096, -0.352, 0.003, 10.159], [0.430, 2.060, 1.672, -0.093]])
    w3 = numpy.array([[2.775, 43.616, -0.233, 0.045], [0.755, -0.138, 0.213, -8.731], [-1.086, -0.167, -0.851, -3.019]])
    bo = [14.764, -21.116, -9.164]
    return w1, w2, w3, bo

你可能感兴趣的:(python,python,神经网络,卷积,深度学习,numpy)