- 对话系统(Chatbots) 原理与代码实例讲解
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1对话系统的发展历程对话系统,又称聊天机器人(Chatbots),是模拟人类对话的计算机程序。从早期的基于规则的系统到如今基于深度学习的智能体,对话系统经历了漫长的发展历程。第一阶段:基于规则的系统(1960s-1990s)早期的对话系统主要基于预先定义的规则和模板。例如,ELIZA(1966)是一个模拟心理治疗师的程序,通过模式匹配和关键词识别来生成回复。这些系统只能处理有限的对
- 如何使用深度学习中的 Transformer 算法进行视频目标检测
go5463158465
python算法深度学习python开发语言
以下将介绍如何使用深度学习中的Transformer算法进行视频目标检测,并给出一个复现相关论文思路及示例代码。这里以DETR(End-to-EndObjectDetectionwithTransformers)为基础进行说明,它是将Transformer引入目标检测领域的经典论文。步骤概述环境准备:安装必要的库,如PyTorch、torchvision等。数据准备:使用公开的视频目标检测数据集,
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- 模型架构选择:从传统NLP到Transformer
AI天才研究院
AI大模型应用入门实战与进阶大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
模型架构选择:从传统NLP到Transformer关键词:自然语言处理(NLP),模型架构,传统NLP,Transformer,RNN,CNN,预训练模型文章目录模型架构选择:从传统NLP到Transformer1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1传统NLP模型3.1.2RNN模型3.1.
- Transformer架构的GPU并行和之前的NLP算法并行有什么不同?
AI大模型学习不迷路
transformer自然语言处理大模型深度学习NLPLLM大语言模型
1.什么是GPU并行计算?GPU并行计算是一种利用图形处理单元(GPU)进行大规模并行数据处理的技术。与传统的中央处理单元(CPU)相比,GPU拥有更多的核心,能够同时处理数千个线程,这使得GPU在处理高度并行的任务时表现出色。在深度学习中,GPU并行计算被广泛应用于训练神经网络,加速模型训练过程。在2017年之前,自然语言处理(NLP)领域的研究者们通常会从头开始训练模型,那时能够利用GPU进行
- ImportError: DLL load failed while importing _rust: 找不到指定的程序的解决方案
爱编程的喵喵
Python基础课程pythonImportErrorDLLloadfailed_rust解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:DLLloa
- Rust中奖励函数的实现与应用
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Rust中奖励函数的实现与应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Rust,奖励函数,强化学习,机器学习,状态空间1.背景介绍1.1问题的由来在机器学习领域,特别是在强化学习(ReinforcementLearning,RL)中,奖励函数(RewardFunction)扮演着至关重要的角色。它定义了智能体(Agent)在执行任务时
- 《向量数据库指南》——MoE应用:解锁深度学习新境界的钥匙
大禹智库
《实战AI智能体》《向量数据库指南》深度学习人工智能向量数据库大禹智库低代码MoE模型
在深度学习的广阔天地里,混合专家(MoE)模型如同一把锐利的钥匙,正逐步解锁着各种复杂应用场景的新境界。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感MoE模型在推动AI技术向前发展中所扮演的重要角色。今天,我将带大家深入探讨MoE模型在自然语言处理、计算机视觉以及多模态学习等领域的应用,并巧妙引导大家通过《向量数据库指南》获取更多干货和深度实战经验。一、自然语言处理
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- 理解随机森林算法
菌菌的快乐生活
算法随机森林机器学习
基本概念随机森林(RandomForest)是一种集成学习算法,它属于机器学习中的监督学习算法。简单来说,它就像是一群“专家”(决策树)在一起讨论并做出决策。想象你要判断一个水果是苹果还是橙子,你可以通过观察水果的颜色、形状、大小等特征。随机森林算法就是利用很多棵决策树来对这个水果进行判断。每一棵决策树就像一个小专家,它们根据自己对这些特征的判断来给出一个答案(是苹果还是橙子),最后综合这些小专家
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- 【 书生·浦语大模型实战营】学习笔记(五):LMDeploy 量化部署
GoAI
深入浅出LLM深入浅出AI大模型LLM部署人工智能LMDeploy
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI1;;爱好者学习,性价比非常高!加入星球➡️点击链接
- PyTorch 框架实现线性回归:从数据预处理到模型训练全流程
大模型铲屎官
PyTorchpytorch线性回归人工智能深度学习python
系列文章目录Pytorch基础篇01-PyTorch新手必看:张量是什么?5分钟教你快速创建张量!02-张量运算真简单!PyTorch数值计算操作完全指南03-Numpy还是PyTorch?张量与Numpy的神奇转换技巧04-揭秘数据处理神器:PyTorch张量拼接与拆分实用技巧05-深度学习从索引开始:PyTorch张量索引与切片最全解析06-张量形状任意改!PyTorchreshape、tra
- python中cv是什么_python里面cv是什么意思
weixin_39639568
python中cv是什么
OpenCV(OpenSourceComputerVisionLibrary)开放源代码计算机视觉库,主要算法涉及图像处理、计算机视觉和机器学习相关方法。OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。OpenCV由一系列C函数和C++类构成,它有C,C++,Python和java接口,当前SDK(SoftwareDevelopmentKit软件
- 论文AI率:检测原理是什么?该如何降低论文AI率?
迪娜学姐
人工智能
我是娜姐@迪娜学姐,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。上一篇介绍了10个检测AI率的在线工具。本篇来说说AI率到底是如何检测出来的?该如何有效降低论文的AI率?和AI大模型一样,AI检测的核心也是机器学习模型,它们在包含人类创作和AI生成文本样本的大型数据集上进行训练,通过学习每种文本中存在的模式和特征,以此来区分人类创作的文本和AI生成文本。AI检测器查找的一些关键特征包
- 深入剖析ipywidgets-7.0.0b1:Python交互式前端库的新进展
多行不易
本文还有配套的精品资源,点击获取简介:ipywidgets是一个用于创建交互式用户界面的Python库,广泛应用于数据可视化和科学计算。最新版本7.0.0b1带来了新特性、性能优化、API改进和兼容性增强。本详细解析包括ipywidgets的核心概述、主要功能、版本新特性以及其在教育、数据探索和应用原型开发等场景中的应用。1.ipywidgets核心概念介绍在当今数据科学和机器学习领域,交互式可视
- 机器学习Day01
酒脑猫
机器学习人工智能
人工智能三大概念及其关系人工智能(AI):使用计算机来模拟或者代替人类机器学习(ML):机器自动学习,并不只由人定义规则编程深度学习(DL):大脑仿生,模拟人大脑神经网络,设计一层层神经元模拟事物机器学习是实现人工智能的一种途径,深度学习是机器学习的一种更加深入的方法。机器学习学习方法基于规则的学习:程序员根据自己经验定义规则基于模型的学习:由于某些事物,问题无法可以定义明确的规则,如:图片,语音
- 机器学习Day1
一飞学编程
机器学习机器学习人工智能
1.背景以周志华教授的《机器学习》为核心学习AI知识2.绪论中的重要概念整理机器学习的目的:利用经验(数据)来改善系统性能记录:(key1:value1,key2:value2…)数据集:记录的集合示例(样本):对一个事件或对象的描述属性(特征):key1,key2…属性值:value1,value2…属性空间(样本空间、输入空间):key1,key2等组成的多维空间特征向量:形如(value1,
- 机器学习建模流程 day02
扫把星133
机器学习人工智能python
机器学习建模流程通常可以分为以下几个主要步骤:问题定义与数据收集:确定问题的类型(分类、回归、聚类等可见上篇所讲内容)和目标。收集相关数据,可以是从数据库、API、文件或其他来源获取。注释:数据库是计算机里面的存储的数据的,当然可以对数据进行一些操作增删改查,通常用于存储大量结构化数据,并提供高效的数据操作和查询功能。API(ApplicationProgrammingInterface,应用程序
- AI技术赋能电商行业,引领变革
m0_74136676
人工智能
AI大模型在电商行业的应用正在不断拓展,其强大的数据处理和分析能力为电商平台带来了前所未有的创新机遇。一、购物推荐的创新应用AI大模型通过分析用户的浏览历史、购买记录、搜索关键词等大量数据,能够生成个性化的商品推荐。这种推荐系统比传统的基于规则或简单协同过滤的推荐更为精准。它利用深度学习技术,更准确地预测用户的兴趣点,使推荐内容更加贴切,从而提高用户点击率和购买转化率。例如,当用户在电商平台上搜索
- 【DL】神经网络与机器学习基础知识介绍(一)
MengWoods
深度学习机器学习神经网络人工智能
原博客:https://mengwoods.github.io/post/dl/009-dl-fundamental/文章目录基本通用概念梯度下降算法数据工程训练技术偏差与方差防止过拟合评估指标决策树基本通用概念机器学习的类型:监督学习(SupervisedLearning):分类,回归无监督学习(UnsupervisedLearning):聚类,降维强化学习(ReinforcementLearn
- DeepSeek V3 模型微调(SFT)技术详解
zhangjiaofa
大模型DeepSeek模型微调
DeepSeekV3模型微调(SFT)技术详解目录引言背景知识2.1深度学习与预训练模型2.2微调(Fine-tuning)的概念2.3监督微调(SupervisedFine-tuning,SFT)DeepSeekV3模型概述3.1模型架构3.2预训练任务3.3模型性能监督微调(SFT)技术详解4.1数据准备4.1.1数据收集与清洗4.1.2数据标注4.1.3数据增强4.2模型初始化4.2.1预训
- 使用seaborn绘制相关性热力图
CodeWG
python
使用seaborn绘制相关性热力图在数据分析和机器学习中,热力图是一种常见的可视化方法,用于显示不同变量之间的相关性。在Python中,我们可以使用seaborn库绘制相关性热力图。本文将介绍如何使用seaborn中的heatmap函数来绘制相关性热力图,并为读者提供示例代码。首先,我们需要导入必要的库:pandas、numpy和seaborn。我们还使用了matplotlib库以便于展示结果。i
- LeetCode 119. 杨辉三角 II
不見星空
leetcode算法
题意:求杨辉三角(帕斯卡三角)的第n行(n从0开始)杨辉三角的每一行是二项式排列组合的展开式第n行为:Cn0,Cn1,Cn2,…,CnnC_{n}^{0},C_{n}^{1},C_{n}^{2},\dots,C_{n}^{n}Cn0,Cn1,Cn2,…,Cnn又已知排列组合的阶乘表示公式Cnm=n!m!(n−m)!C_{n}^{m}=\frac{n!}{m!(n-m)!}Cnm=m!(n−m)!n
- 一文搞懂python的face_recognition人脸识别库
码上飞扬
python开发语言人脸识别
随着人工智能和机器学习的快速发展,人脸识别技术在安全监控、身份验证、智能相册等领域的应用越来越广泛。Python作为一门简洁高效的编程语言,其丰富的库支持使得人脸识别的实现变得更加容易。本文将介绍如何使用Python的face_recognition库来实现基本的人脸识别功能。一、face_recognition库简介1.1什么是face_recognition库?face_recognition
- 智联未来——打造基于机器学习的MySQL智能运维助手,开启协作新时代
墨夶
数据库学习资料2机器学习mysql运维
在当今快速发展的信息技术领域,数据库作为信息系统的核心组件,其稳定性和效率直接关系到业务的成功与否。面对日益增长的数据管理和处理需求,传统的运维方式已经难以满足现代企业对高效、稳定服务的要求。为此,越来越多的企业开始探索如何通过智能化手段提升数据库运维水平,特别是利用最新的AI技术和自动化工具来构建一个功能强大的智能运维助手。今天,我们将深入了解如何训练这样一个基于机器学习的MySQL智能运维助手
- 数字人民币小写转大写
库库的写代码
js前端javascript开发语言
只需一个方法functionconvertCurrency(money){if(money==null||money===undefined){return'';}//汉字的数字varcnNums=newArray('零','壹','贰','叁','肆','伍','陆','柒','捌','玖');//基本单位varcnIntRadice=newArray('','拾','佰','仟');//对应整
- Transformer--概念、作用、原理、优缺点以及简单的示例代码
Ambition_LAO
transformer深度学习
Transformer的概念Transformer是一种基于自注意力机制的神经网络模型,最早由Vaswani等人在2017年的论文《AttentionisAllYouNeed》中提出。它主要用于自然语言处理任务,如机器翻译、文本生成、文本分类等。与传统的循环神经网络(RNN)和长短时记忆网络(LSTM)不同,Transformer完全摆脱了序列结构的依赖,可以并行处理数据,显著提高了训练效率和效果
- Tensor 基本操作2 理解 tensor.max 操作,沿着给定的 dim 是什么意思 | PyTorch 深度学习实战
Chatopera 研发团队
机器学习深度学习pytorch人工智能
前一篇文章,Tensor基本操作1|PyTorch深度学习实战本系列文章GitHubRepo:https://github.com/hailiang-wang/pytorch-get-started目录Tensor基本操作torch.max默认指定维度Tensor基本操作torch.maxtorch.max实现降维运算,基于指定的dim选取子元素的最大值。默认a=torch.randn(1,3)p
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR