Anaconda 安装pytorch-gpu,tensorflow-gpu

创建新环境:

conda create -n your_name python=3.6

查看cuda版本:

 nvcc --version

CUDA10.0

激活环境,安装pytorch-gpu,torchvision

在官网查找和cuda对应的版本https://pytorch.org/get-started/previous-versions/

conda activate your_name
pip install torch==1.2.0 torchvision==0.4.0

查看是否使用GPU:  True即可

import torch
print(torch.cuda.is_available())

安装tensorflow-gpu

pip install tensorflow-gpu==2.0.0

查看tensorfllow是否使用gpu

import tensorflow as tf
print(tf.test.is_gpu_available())

报错, 查看cuda cudnn

发现没有安装cudnn.

cuda 版本 
cat /usr/local/cuda/version.txt

cudnn 版本 
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

卸载cuda

sudo /usr/local/cuda-10.0/bin/uninstall_cuda-10.0.pl

安装CUDA10.0

官网:https://developer.nvidia.com/cuda-10.0-download-archive

sudo sh cuda_10.0.130_410.48_linux.run

参考链接:https://blog.csdn.net/wf19930209/article/details/81879514

安装cudnn:https://blog.csdn.net/qq_39852676/article/details/98209976

cudnn官网:https://developer.nvidia.com/rdp/cudnn-archive    登录进去即可下载
 

cd /usr/local/cudnn7.6.4/
sudo dpkg -i libcudnn7_7.6.4.38-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.6.4.38-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-doc_7.6.4.38-1+cuda10.0_amd64.deb

# 按顺序安装

你可能感兴趣的:(调BUG,anaconda,pytorch,tensorflow,1024程序员节)