Leetcode1631最小体力消耗路径--三种思路

Leetcode1634最小体力消耗路径

思路一、暴力(回溯法)

说明:此方法时间复杂度太大,不能通过测试,仅仅作为参考

class Solution {
     
    public int minimumEffortPath(int[][] heights) {
     
    	m=heights.length;
    	n=heights[0].length;
    	visited=new int[m][n];
    	res=Integer.MAX_VALUE;
    	dfs(0,0,heights[0][0],0,heights);
    	return res;
    }
    //回溯法
    void dfs(int x,int y,int lastNum,int curMax,int[][] heights) {
     
    	curMax=Math.max(Math.abs(heights[x][y]-lastNum),curMax);
    	if(x==m-1 && y==n-1) {
     
    		res=Math.min(res, curMax);
    		return;
    	}
    	for(int i=0;i<4;i++) {
     
    		if(x+dfsX[i]>=0 && x+dfsX[i]<m &&y+dfsY[i]>=0 && y+dfsY[i]<n && visited[x+dfsX[i]][y+dfsY[i]]==0) {
     
    				visited[x][y]=1;
    				dfs(x+dfsX[i],y+dfsY[i],heights[x][y],curMax,heights);
    				visited[x][y]=0;
    		}
    	}
    	return;
    }
    
    
    int res;
    int[][] visited;
    int m,n;
    int[] dfsX=new int[] {
     0,1,0,-1};
    int[] dfsY=new int[] {
     1,0,-1,0};
}

思路二、Dijkstra算法

众所周知,网格本身就是一张图,求图中两点间的最短距离dj算法首当其冲,虽然这种算法复杂度比较高,但是其通用性却是显而易见的。
代码在leetcode中刚好通过测试

class Solution {
     
    public int minimumEffortPath(int[][] heights) {
     
    	//dj算法
    	int m=heights.length;
    	int n=heights[0].length;
    	int[] visited=new int[m*n];
    	int[] weight=new int[m*n];
    	for(int i=1;i<m*n;i++) {
     
    		weight[i]=Integer.MAX_VALUE;
    	}
    	//初始化权值
    	for(int i=1;i<m*n;i++) {
     
    		int minNode=0,min=Integer.MAX_VALUE;
    		//寻找最小边
    		for(int j=0;j<m*n;j++) {
     
    			if(visited[j]==0 && weight[j]<min) {
     
    				min=weight[j];
    				minNode=j;
    			}
    		}
    		if(minNode==m*n-1) break;
    		visited[minNode]=1;
    		//将结点化为2维坐标
    		int x=minNode/n;
    		int y=minNode%n;
    		//更新权值
    		for(int j=0;j<4;j++) {
     
    			int nextX=x+dfsX[j]; int nextY=y+dfsY[j];
    			if(nextX>=0 && nextX<m && nextY>=0 && nextY<n) {
     
    				int index=nextX*n+nextY;
    				if(visited[index]==1) continue;
    				int w=Math.abs(heights[x][y]-heights[nextX][nextY]);
                    w=Math.max(min, w);
    				weight[index]=Math.min(weight[index], w);
    			}
    		}
    	}
    	return weight[m*n-1];
    }
    int[] dfsX=new int[] {
     0,1,0,-1};
    int[] dfsY=new int[] {
     1,0,-1,0};
}

思路三、贪心+并查集

说明:此思路是基于贪心+并查集解决的,想法很巧妙。我们首先将网格抽象成一张图,对于图的边的权值即为两节点间的体力值。我们可以将所有的边存入优先队列中,然会逐渐按权值从小到大合并边所对应的两个结点,直到起点和终点可以恰好连通,则让起点终点恰好连通的边的权即为消耗的最小体力值。
代码(代码摘录自leetcode官方):

class Solution {
     
    public int minimumEffortPath(int[][] heights) {
     
        int m = heights.length;
        int n = heights[0].length;
        List<int[]> edges = new ArrayList<int[]>();
        for (int i = 0; i < m; ++i) {
     
            for (int j = 0; j < n; ++j) {
     
                int id = i * n + j;
                if (i > 0) {
     
                    edges.add(new int[]{
     id - n, id, Math.abs(heights[i][j] - heights[i - 1][j])});
                }
                if (j > 0) {
     
                    edges.add(new int[]{
     id - 1, id, Math.abs(heights[i][j] - heights[i][j - 1])});
                }
            }
        }
        Collections.sort(edges, new Comparator<int[]>() {
     
            public int compare(int[] edge1, int[] edge2) {
     
                return edge1[2] - edge2[2];
            }
        });

        UnionFind uf = new UnionFind(m * n);
        int ans = 0;
        for (int[] edge : edges) {
     
            int x = edge[0], y = edge[1], v = edge[2];
            uf.unite(x, y);
            if (uf.connected(0, m * n - 1)) {
     
                ans = v;
                break;
            }
        }
        return ans;
    }
}

// 并查集模板
class UnionFind {
     
    int[] parent;
    int[] size;
    int n;
    // 当前连通分量数目
    int setCount;

    public UnionFind(int n) {
     
        this.n = n;
        this.setCount = n;
        this.parent = new int[n];
        this.size = new int[n];
        Arrays.fill(size, 1);
        for (int i = 0; i < n; ++i) {
     
            parent[i] = i;
        }
    }
    
    public int findset(int x) {
     
        return parent[x] == x ? x : (parent[x] = findset(parent[x]));
    }
    
    public boolean unite(int x, int y) {
     
        x = findset(x);
        y = findset(y);
        if (x == y) {
     
            return false;
        }
        if (size[x] < size[y]) {
     
            int temp = x;
            x = y;
            y = temp;
        }
        parent[y] = x;
        size[x] += size[y];
        --setCount;
        return true;
    }
    
    public boolean connected(int x, int y) {
     
        x = findset(x);
        y = findset(y);
        return x == y;
    }
}

你可能感兴趣的:(leetcode探索,leetcode,最短路径,算法,dfs)