【图像分割】随机游走算法用于图像分割【Matlab 108期】

一、简介

  1. 关于全局最优化求解
      全局最优化是一个非常复杂的问题,目前还没有一个通用的办法可以对任意复杂函数求解全局最优值。上一篇文章讲解了一个求解局部极小值的方法——梯度下降法。这种方法对于求解精度不高的情况是实用的,可以用局部极小值近似替代全局最小值点。但是当要求精确求解全局最小值时,梯度下降法就不适用了,需要采用其他的办法求解。常见的求解全局最优的办法有拉格朗日法、线性规划法、以及一些人工智能算法比如遗传算法、粒子群算法、模拟退火算法等(可以参见我之前的博客)。而今天要讲的是一个操作简单但是不易陷入局部极小值的方法:随机游走算法。
  2. 随机游走算法操作步骤
    设f(x)f(x)是一个含有nn个变量的多元函数,x=(x1,x2,…,xn)x=(x1,x2,…,xn)为nn维向量。
    给定初始迭代点xx,初次行走步长λλ,控制精度ϵϵ(ϵϵ是一个非常小的正数,用于控制结束算法)。
    给定迭代控制次数NN,kk为当前迭代次数,置k=1k=1。
    当 k 计算函数值,如果 f(x1) 如果连续NN次都找不到更优的值,则认为,最优解就在以当前最优解为中心,当前步长为半径的NN维球内(如果是三维,则刚好是空间中的球体)。此时,如果λ<ϵλ<ϵ,则结束算法;否则,令λ=λ2λ=λ2,回到第1步,开始新一轮游走。

二、源代码

clear ;
close all;
 
addpath 'algorithms'
out = ['results\'];
if ~exist(out)
    mkdir(out);
end
 
%% parameters            
only_name= '41004';
img_name = ['./imgs/' only_name '.jpg'];
ref_name = ['./scribbles/' only_name '.bmp'];
 
 
nei = 1;            % 0: 4-neighbors, 1: 8-neighbors
c = 0.0004;%1e-3;%         % restarting probability of RWR
sigma_c = 60;       % color variance
scale = 1.0;        % image resize
lambda = 2e-10;     % parameter for unitary
isKeepConnect = 0;  % 1: only consinder the connected regions with seeds;  0: otherwise.
reset(RandStream.getGlobalStream); % fix the random seed for initalization of GMM
 
saveProb = 0; % 1: save the probability image
%% main routine
img = imread(img_name); img = imresize(img,scale);
[K, labels, idx] = seed_generation(ref_name,scale);
 
%% RWR with prior
% run('vlfeat-0.9.13/toolbox/vl_setup');
st=clock;
[posteriors label_img] = do_RWR_prior(img,idx,labels,c,lambda,nei,sigma_c,isKeepConnect);
fprintf('subRW took %.2f second\n',etime(clock,st));
 
% display
[imgMasks,segOutline,imgMarkup]=segoutput(im2double(img),label_img); %clear imgMasks segOutline;
 
outPath = [out,'ours\'];
if ~exist(outPath)
    mkdir(outPath);
end
 
figure; clf;set(gcf,'Position',[100,500,size(img,2)*(K+1),size(img,1)]);
for k=1:K 
    prob_img = sc(posteriors(:,:,k),'prob_jet');
    if saveProb == 1
        imwrite(prob_img,[outPath,only_name,'_prob',num2str(k),'.png']);
    end
    subplot(1,K+1,k); imshow(prob_img); clear prob_img;
end;
subplot(1,K+1,K+1); imshow(imgMarkup);
figure,imshow((K-imgMasks)/(K-1));
 
imwrite(imgMarkup,[outPath,only_name,'_bound.png']);
imwrite((K-imgMasks)/(K-1),[outPath,only_name,'_binary.png']);

三、运行结果

【图像分割】随机游走算法用于图像分割【Matlab 108期】_第1张图片
【图像分割】随机游走算法用于图像分割【Matlab 108期】_第2张图片

四、备注

完整代码或者代写添加QQ912100926
往期回顾>>>>>>
【图像压缩】图像处理教程系列之图像压缩【Matlab 074期】
【图像分割】图像处理教程系列之图像分割(一)【Matlab 075期】
【图像分割】图像处理教程系列之图像分割(二)【Matlab 076期】
【模式识别】银行卡号之识别【Matlab 077期】
【模式识别】指纹识别【Matlab 078期】
【图像处理】基于GUI界面之DWT+DCT+PBFO改进图像水印隐藏提取【Matlab 079期】
【图像融合】CBF算法之图像融合【Matlab 080期】
【图像去噪】自适应形态学之图像去噪【Matlab 081期】
【图像增强】DEHAZENET和HWD之水下去散射图像增强【Matlab 082期】
【图像增强】PSO寻优ACE之图像增强【Matlab 083期】
【图像重建】ASTRA算法之图像重建【Matlab 084期】
【图像分割】四叉树之图像分割【Matlab 085期】
【图像分割】心脏中心线之提取【Matlab 086期】
【图像识别】SVM植物叶子之疾病检测和分类【Matlab 087期】
【图像识别】基于GUI界面之模板匹配手写数字识别系统【Matlab 088期】
【图像识别】基于GUI界面之不变矩的数字验证码识别【Matlab 089期】
【图像识别】条形码识别系统【Matlab 090期】
【图像识别】基于GUI界面RGB和BP神经网络之人民币识别系统【Matlab 091期】
【图像识别】CNN卷积神经网络之验证码识别【Matlab 092期】
【图像分类】极限学习分类器之对遥感图像分类【Matlab 093期】
【图像变换】DIBR-3D之图像变换【Matalb 094期】
【图像分割】模糊聚类算法之FCM图像分割【Matlab 095期】
【模式识别】银行监控系统之人脸识别【Matlab 096期】
【模式识别】基于GUI界面之疲劳检测系统【Matlab 097期】
【图像识别】国外车牌识别【Matlab 098期】
【图像分割】最大类间方差法(otsu)之图像分割【Matlab 099期】
【图像分割】直觉模糊C均值聚类之图像分割IFCM【Matlab 100期】
【图像分割】基于matlab形态学重建和过滤改进FCM算法(FRFCM)之图像分割【Matlab 101期】
【图像增强】局部对比度增强CLAHE算法之直方图增强【Matlab 102期】
【图像融合】Frequency Partition之图像融合【Matlab 103期】
【图像评价】SVM之图像无参考质量评价【Matlab 104期】
【图像边缘检测】最小二乘法用于椭圆边缘检测【Matlab 105期】
【图像加密】基于GUI界面之混沌系统图像加密解密【Matlab 106期】
【图像配准】SIFT算法之图像配准【Matlab 107期】

你可能感兴趣的:(matlab,图像处理)