本文首发于个人网站,如需转载请注明来源:类加载器中的双亲委派模型,看这篇就够了
在上一篇文章中,我们梳理了类加载器的基本概念:类的生命周期、类加载器的作用、类的加载和卸载的时机等等,这篇文章我们接着前文继续复习类加载器的知识,主要包括:JVM中有哪些类加载器?它们之间是什么关系?什么是双亲委派机制?
从JVM的角度看,类加载器主要有两类:Bootstrap ClassLoader和其他类加载,Bootstrap ClassLoader是C++语言实现,是虚拟机自身的一部分;其他类加载器都是Java语言实现,不属于虚拟机,全部继承自抽象类java.lang.ClassLoader。
从Java开发者的角度看,需要了解类加载器的双亲委派模型,如下图所示:
在下面的代码中,java.util.HashMap是rt.jar包中的类,因此它的类加载器是null,DNSNameService类是放在ext目录下的jar包中的类,因此它的类加载器是ExtClassLoader;MyClassLoaderTest的类加载器就是应用类加载器。
import java.util.HashMap;
import sun.net.spi.nameservice.dns.DNSNameService;
public class MyClassLoaderTest {
public static void main(String[] args) {
System.out.println("class loader for HashMap: " + HashMap.class.getClassLoader());
System.out.println(
"class loader for DNSNameService: " + DNSNameService.class.getClassLoader());
System.out.println("class loader for this class: " + MyClassLoaderTest.class.getClassLoader());
System.out.println("class loader for Blob class: " + com.mysql.jdbc.Blob.class.getClassLoader());
}
}
运行上述代码的接入过下图所示:
通过下面的这个程序,可以看到,每个类加载器负责的jar文件路径都不一样:
public class JVMClassLoader {
public static void main(String[] args) {
System.out.println("引导类加载器加载路径:" + System.getProperty("sun.boot.class.path"));
System.out.println("扩展类加载器加载路径:" + System.getProperty("java.ext.dirs"));
System.out.println("系统类加载器加载路径:" + System.getProperty("java.class.path"));
}
}
Arthas中提供了classloader命令,可以用来查看当前应用中的类加载器相关的统计信息,如下图所示,
如果一个类加载器收到了类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到顶层的启动类加载器中,只有当父加载器反馈自己无法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子加载器才会尝试自己去加载。
使用双亲委派模型来组织类加载器之间的关系,有一个显而易见的好处就是Java类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object,它存放在rt.jar之中,无论哪一个类加载器要加载这个类,最终都是委派给处于模型最顶端的启动类加载器进行加载,因此Object类在程序的各种类加载器环境中都是同一个类。相反,如果没有使用双亲委派模型,由各个类加载器自行去加载的话,如果用户自己编写了一个称为java.lang.Object的类,并放在程序的Class Path中,那系统中将会出现多个不同的Object类,Java类型体系中最基础的行为也就无法保证,应用程序也将会变得一片混乱。
双亲委派模型的实现非常简单,实现双亲委派的代码在java.lang.ClassLoader的loadClass()方法之中,如下面的代码所示:
protected Class> loadClass(String name, boolean resolve)
throws ClassNotFoundException
{
synchronized (getClassLoadingLock(name)) {
// 首先,检查该类是否已经被加载
Class> c = findLoadedClass(name);
if (c == null) {
long t0 = System.nanoTime();
try {
if (parent != null) {
c = parent.loadClass(name, false);
} else {
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {
// 如果父类加载器抛出ClassNotFoundException,
// 说明父类加载器无法完成加载请求
}
if (c == null) {
// 在父类加载器无法加载的时候,再调用本类的findClass方法进行类加载请求
long t1 = System.nanoTime();
c = findClass(name);
// this is the defining class loader; record the stats
// 当前类加载器是该类的define class loader
sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
sun.misc.PerfCounter.getFindClasses().increment();
}
}
if (resolve) {
resolveClass(c);
}
return c;
}
}
如上所述,双亲委派模型很好得解决了各个类加载器的基础类的统一问题(越基础的类由越上层的加载器进行加载),如果基础类又要回调用户的类该怎么办?一个非常经典的例子就是SQL的驱动管理类——java.sql.DriverManager。
java.sql.DriverManager是Java的标准服务,该类放在rt.jar中,因此是由启动类加载器加载的,但是在应用启动的时候,该驱动类管理是需要加载由不同数据库厂商实现的驱动,但是启动类加载器找不到这些具体的实现类,为了解决这个问题,Java设计团队提供了一个不太优雅的设计:线程上下文加载器(Thread Context ClassLoader)。这个类加载器可以通过java.lang.Thread类的setContextClassLoader()方法进行设置,如果创建线程时候它还没有被设置,就会从父线程中继承一个,如果再应用程序的全局范围都没有设置过的话,那这个类加载器就是应用程序类加载器。
有了线程上下文加载器,就可以解决上面的问题——父类加载器需要请求子类加载器完成类加载的动作,这种行为实际上就是打破了双亲委派的加载规则。
接下来,我们以java.sql.DriverManager为例,看下线程上下文加载器的用法,在java.sql.DriverManager类的下面这个静态块中,是JDBC驱动加载的入口。
/**
* Load the initial JDBC drivers by checking the System property
* jdbc.properties and then use the {@code ServiceLoader} mechanism
*/
static {
loadInitialDrivers();
println("JDBC DriverManager initialized");
}
顺着loadInitialDrivers()方法往下看,使用线程上下文加载器的地方在ServiceLoader.load里
private static void loadInitialDrivers() {
// ……省去别的代码
AccessController.doPrivileged(new PrivilegedAction() {
public Void run() {
ServiceLoader loadedDrivers = ServiceLoader.load(Driver.class);
Iterator driversIterator = loadedDrivers.iterator();
try{
while(driversIterator.hasNext()) {
driversIterator.next();
}
} catch(Throwable t) {
// Do nothing
}
return null;
}
});
//…… 省去别的代码
ServiceLoader.load方法的代码如下,JDBC的sqlDriverManager就是这里获得的上下文加载器来驱动用户代码加载指定的类的。
public static ServiceLoader load(Class service) {
// 获取当前线程中的上下文类加载器
ClassLoader cl = Thread.currentThread().getContextClassLoader();
return ServiceLoader.load(service, cl);
}
那么这个上下文加载器是什么时候设置进去的呢?前面我们提到了:
这个类加载器可以通过java.lang.Thread类的setContextClassLoader()方法进行设置,如果创建线程时候它还没有被设置,就会从父线程中继承一个,如果再应用程序的全局范围都没有设置过的话,那这个类加载器就是应用程序类加载器。
看下setContextClassLoader()方法别谁调用了,最终我们在Launcher中找到了如下代码:
public class Launcher {
//……省去别的代码
public Launcher() {
Launcher.ExtClassLoader var1;
try {
var1 = Launcher.ExtClassLoader.getExtClassLoader();
} catch (IOException var10) {
throw new InternalError("Could not create extension class loader", var10);
}
try {
this.loader = Launcher.AppClassLoader.getAppClassLoader(var1);
} catch (IOException var9) {
throw new InternalError("Could not create application class loader", var9);
}
Thread.currentThread().setContextClassLoader(this.loader);
//……省去别的代码
}
}
这篇文章我们复习了类加载器的双亲委派模型、双亲委派模型的工作过程,以及打破双亲委派模型的必要性和源码分析。在第一部分的结尾,我们还演示了Arthas中关于类加载器的命令的用法,在实际排查问题时可以考虑使用。
本号(javaadu)专注于后端技术、JVM问题排查和优化、Java面试题、个人成长和自我管理等主题,为读者提供一线开发者的工作和成长经验,期待你能在这里有所收获。