4-3利用神经网络解决回归问题(波士顿房价)

4-3利用神经网络解决回归问题(波士顿房价)_第1张图片

demo_reg.py

import torch
#data
import numpy as np
import re
ff = open("housing.data").readlines()
data = []
for item in ff:
    out = re.sub(r"\s{2,}"," ",item).strip()
    #print(out)
    data.append(out.split(" "))
data = np.array(data).astype(np.float)
#print(data)
#print(data.shape)
Y = data[:, -1]
X = data[:, 0:-1]

X_train = X[0:496, :]
Y_train = Y[0:496]
X_test = X[496:, :]
Y_test = Y[496:]

print(X_train.shape)
print(Y_train.shape)
print(X_test.shape)
print(Y_test.shape)
#net
class Net(torch.nn.Module):
    def __init__(self,n_feature,n_output):
        super(Net,self).__init__()
        self.hidden = torch.nn.Linear(n_feature,100)
        self.predict = torch.nn.Linear(100,n_output)

    def forward(self,x):
        out = self.hidden(x)
        out = torch.relu(out)
        out = self.predict(out)
        return out
#输入13,输出1
net = Net(13,1)

#loss
loss_func = torch.nn.MSELoss()
#optimiter
#optimizer = torch.optim.SGD(net.parameters(),lr = 0.0001)
optimizer = torch.optim.Adam(net.parameters(),lr = 0.001)
#training
for i in range(10000):
    x_data = torch.tensor(X_train,dtype= torch.float32)
    y_data = torch.tensor(Y_train, dtype = torch.float32)
    pred = net.forward(x_data)
    pred = torch.squeeze(pred)
    loss = loss_func(pred,y_data) * 0.001
    # print(pred.shape)
    # print(y_data.shape)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    print("ite:{},loss_train:{}".format(i,loss))
    print(pred[0:10])
    print(y_data[0:10])

    # test
    x_data = torch.tensor(X_test, dtype=torch.float32)
    y_data = torch.tensor(Y_test, dtype=torch.float32)
    pred = net.forward(x_data)
    pred = torch.squeeze(pred)
    loss_test = loss_func(pred, y_data) * 0.001
    print("ite:{}, loss_test:{}".format(i, loss_test))

torch.save(net,"model/model.pkl")
# torch.load("")
# torch.save(net.state_dict(),"params.pkl")
# net.load_state_dict("")

demo_reg_inference

import torch
import numpy as np
import re

#net
class Net(torch.nn.Module):
    def __init__(self,n_feature,n_output):
        super(Net,self).__init__()
        self.hidden = torch.nn.Linear(n_feature,100)
        self.predict = torch.nn.Linear(100,n_output)

    def forward(self,x):
        out = self.hidden(x)
        out = torch.relu(out)
        out = self.predict(out)
        return out


ff = open("housing.data").readlines()
data = []
for item in ff:
    out = re.sub(r"\s{2,}"," ",item).strip()
    #print(out)
    data.append(out.split(" "))
data = np.array(data).astype(np.float)
#print(data)
#print(data.shape)
Y = data[:, -1]
X = data[:, 0:-1]

X_train = X[0:496, ...]
Y_train = Y[0:496, ...]
X_test = X[496:, ...]
Y_test = Y[496:, ...]

net = torch.load("model/model.pkl")
#loss
loss_func = torch.nn.MSELoss()
# test
x_data = torch.tensor(X_test, dtype=torch.float32)
y_data = torch.tensor(Y_test, dtype=torch.float32)
pred = net.forward(x_data)
pred = torch.squeeze(pred)
loss_test = loss_func(pred, y_data) * 0.001
print("loss_test:{}".format(loss_test))
D:\ANACONDA\envs\pytorch_gpu\python.exe E:/pytorch/004/demo_reg_inference.py
loss_test:0.00915122777223587

你可能感兴趣的:(pytorch学习)