poj1584

题意:已知一个多边形的n个顶点坐标,然后再给一个钉子,给定钉子的半径和圆心坐标,首先判断多边形是否为凸多边形,若为凸多边形,再判断钉子是否可以放到凸多边形内部。

 

思路:

1.由于顶点给出的顺序可能为逆时针或顺时针,所以在判断是否为凸边形,利用叉积的性质,每个点依次扫描看是否都顺着同一的方向转动。

2.判断圆(钉子)是否在多边形内部,第一步判断圆心是否在凸多边形内部(以圆心为定点扫描一周),第二步再判断圆心到某一边的最短距离,若存在某最短距离大于圆心,则圆不能放在凸多边内。
或者思路可以参考这个:
http://blog.csdn.net/lyy289065406/article/details/6648606

 
  
#include <stdlib.h>

#include <math.h>

#include <iostream>



#define MAXN 1000

#define offset 10000

#define eps 1e-8

#define zero(x) (((x)>0?(x):-(x))<eps)

#define _sign(x) ((x)>eps?1:((x)<-eps?2:0))





struct point{ double x, y; };

struct line{ point a, b; };



double xmult(point p1, point p2, point p0){

	return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);

}



//判定凸多边形,顶点按顺时针或逆时针给出,允许相邻边共线

bool is_convex(int n, point* p){

	int i, s[3] = { 1, 1, 1 };

	for (i = 0; i < n && s[1] | s[2]; i++)

		s[_sign(xmult(p[(i + 1)%n], p[(i + 2)%n], p[i]))] = 0;

	return s[1] | s[2];

}



//判定凸多边形,顶点按顺时针或逆时针给出,不允许相邻边共线

bool is_convex_v2(int n, point* p){

	int i, s[3] = { 1, 1, 1 };

	for (i = 0; i < n && s[0] && s[1] | s[2]; i++)

		s[_sign(xmult(p[(i + 1)%n], p[(i + 2)%n], p[i]))] = 0;

	return s[0] && s[1] | s[2];

}



//判点在凸多边形内或多边形边上,顶点按顺时针或逆时针给出

bool inside_convex(point q, int n, point* p){

	int i, s[3] = { 1, 1, 1 };

	for (i = 0; i < n && s[1] | s[2]; i++)

		s[_sign(xmult(p[(i + 1)%n], q, p[i]))] = 0;

	return s[1] | s[2];

}



//判点在凸多边形内,顶点按顺时针或逆时针给出,在多边形边上返回0

bool inside_convex_v2(point q, int n, point* p){

	int i, s[3] = { 1, 1, 1 };

	for (i = 0; i < n && s[0] && s[1] | s[2]; i++)

		s[_sign(xmult(p[(i + 1)%n], q, p[i]))] = 0;

	return s[0] && s[1] | s[2];

}



//判点在任意多边形内,顶点按顺时针或逆时针给出

//on_edge表示点在多边形边上时的返回值,offset为多边形坐标上限

bool inside_polygon(point q, int n, point* p, int on_edge = 1){

	point q2;

	int i = 0, count;

	while (i < n)

		for (count = i = 0, q2.x = rand() + offset, q2.y = rand() + offset; i < n; i++)

			if (zero(xmult(q, p[i], p[(i + 1)%n])) && (p[i].x - q.x)*(p[(i + 1)%n].x - q.x) < eps && (p[i].y - q.y)*(p[(i + 1)%n].y - q.y) < eps)

				return on_edge;

			else if (zero(xmult(q, q2, p[i])))

				break;

			else if (xmult(q, p[i], q2)*xmult(q, p[(i + 1)%n], q2) < -eps && xmult(p[i], q, p[(i + 1)%n])*xmult(p[i], q2, p[(i + 1)%n]) < -eps)

				count++;

			return count & 1;

}



inline bool opposite_side(point p1, point p2, point l1, point l2){

	return xmult(l1, p1, l2)*xmult(l1, p2, l2) < -eps;

}



inline bool dot_online_in(point p, point l1, point l2){

	return zero(xmult(p, l1, l2)) && (l1.x - p.x)*(l2.x - p.x) < eps && (l1.y - p.y)*(l2.y - p.y) < eps;

}



//判线段在任意多边形内,顶点按顺时针或逆时针给出,与边界相交返回1

bool inside_polygon(point l1, point l2, int n, point* p){

	point t[MAXN], tt;

	int i, j, k = 0;

	if (!inside_polygon(l1, n, p) || !inside_polygon(l2, n, p))

		return 0;

	for (i = 0; i < n; i++)

		if (opposite_side(l1, l2, p[i], p[(i + 1)%n]) && opposite_side(p[i], p[(i + 1)%n], l1, l2))

			return 0;

		else if (dot_online_in(l1, p[i], p[(i + 1)%n]))

			t[k++] = l1;

		else if (dot_online_in(l2, p[i], p[(i + 1)%n]))

			t[k++] = l2;

		else if (dot_online_in(p[i], l1, l2))

			t[k++] = p[i];

		for (i = 0; i < k; i++)

			for (j = i + 1; j < k; j++){

				tt.x = (t[i].x + t[j].x) / 2;

				tt.y = (t[i].y + t[j].y) / 2;

				if (!inside_polygon(tt, n, p))

					return 0;

			}

			return 1;

}



double distance(point p1, point p2)

{

	return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));

}

double disptoline(point p, point l1, point l2){

	return fabs(xmult(p, l1, l2)) / distance(l1, l2);

}

int intersect_seg_circle(point c, double r, point l1, point l2){

	double t1 = distance(c, l1) - r, t2 = distance(c, l2) - r;

	point t = c;

	if (t1<eps || t2<eps)

		return t1>-eps || t2>-eps;

	t.x += l1.y - l2.y;

	t.y += l2.x - l1.x;

	return xmult(l1, c, t)*xmult(l2, c, t) < eps && disptoline(c, l1, l2) - r < eps;

}

//判断圆是否在多边形内

bool circle_in_polygen(double r, point o, int n, point *p)

{

	for (int i = 1; i < n; i++)

	{

		bool flag = intersect_seg_circle(o, r, p[i - 1], p[i]);

		if (flag) { return false; break; }

	}

	return true;

}



point intersection(line u, line v){

	point ret = u.a;

	double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x))

		/ ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x));

	ret.x += (u.b.x - u.a.x)*t;

	ret.y += (u.b.y - u.a.y)*t;

	return ret;

}



point barycenter(point a, point b, point c){

	line u, v;

	u.a.x = (a.x + b.x) / 2;

	u.a.y = (a.y + b.y) / 2;

	u.b = c;

	v.a.x = (a.x + c.x) / 2;

	v.a.y = (a.y + c.y) / 2;

	v.b = b;

	return intersection(u, v);

}



//多边形重心

point barycenter(int n, point* p){

	point ret, t;

	double t1 = 0, t2;

	int i;

	ret.x = ret.y = 0;

	for (i = 1; i<n - 1; i++)

		if (fabs(t2 = xmult(p[0], p[i], p[i + 1]))>eps){

			t = barycenter(p[0], p[i], p[i + 1]);

			ret.x += t.x*t2;

			ret.y += t.y*t2;

			t1 += t2;

		}

		if (fabs(t1) > eps)

			ret.x /= t1, ret.y /= t1;

		return ret;

}



int main()

{

	int n;

	double pegR;

	point peg;

	while (std::cin >> n && (n >= 3))

	{

		std::cin >> pegR >> peg.x >> peg.y;

		point p[155];

		for (int i = 0; i < n; i++)

		{

			std::cin >> p[i].x >> p[i].y;

		}

		bool flag = is_convex(n, p);

		bool flag2 = inside_convex_v2(peg, n, p);

		bool flag3 = circle_in_polygen(pegR, peg, n, p);



		if (!flag)

			std::cout << "HOLE IS ILL-FORMED" << std::endl;

		else

		{

			if (flag2 && flag3)

				std::cout << "PEG WILL FIT" << std::endl;

			else

				std::cout << "PEG WILL NOT FIT" << std::endl;

		}

	}

}

你可能感兴趣的:(poj)