- TensorRT模型量化实践
痛&快乐着
深度学习TensorRTc++深度学习
文章目录量化基本概念量化的方法方式1:trtexec(PTQ的一种)方式2:PTQ2.1pythononnx转trt2.2polygraphy工具:应该是对2.1量化过程的封装方式3:QAT(追求精度时推荐)使用TensorRT量化实践(C++版)使用TensorRT量化(python版)参考文献量化基本概念后训练量化PostTrainingQuantization(PTQ)量化过程仅仅通过离线推
- 使用TensorRT对YOLOv8模型进行加速推理
fengbingchun
DeepLearningCUDA/TensorRTYOLOv8TensorRT
这里使用GitHub上shouxieai的infer框架对YOLOv8模型进行加速推理,操作过程如下所示:1.配置环境,依赖项,包括:(1).CUDA:11.8(2).cuDNN:8.7.0(3).TensorRT:8.5.3.1(4).ONNX:1.16.0(5).OpenCV:4.10.02.cloneinfer代码:https://github.com/shouxieai/infer3.使用
- ONNX Runtime、CUDA、cuDNN、TensorRT版本对应
可keke
ML&DLpytorchdeeplearning
文章目录ONNXRuntime的安装ONNXRuntime与CUDA、cuDNN的版本对应ONNXRuntime与ONNX的版本对应ONNXRuntime、TensorRT、CUDA版本对应ONNXRuntime的安装官方文档注意,到目前为止,onnxruntime-gpu在CUDA12.x和CUDA11.x下的安装命令是不同的,仔细阅读官方文档。验证安装python>>>importonnxru
- python 安装 win32com
郎君啊
python开发语言
扩展,Python,安装相关视频讲解:StableDiffusion提升出图速度,TensorRT扩展,SDXL-SSD-1B-A1111,速度提升60%,PyTorch更新python的or运算赋值用法用python编程Excel有没有用处?如何在Windows系统上安装win32com一、整体流程步骤操作1下载并安装Python2安装pywin32扩展包3验证安装是否成功二、具体操作步骤及代码
- 深度学习部署:Triton(Triton inference server)【旧称:TensorRT serving,专门针对TensorRT设计的服务器框架,后来变为Triton,支持其他推理后端】
u013250861
#LLM/部署深度学习人工智能
triton作为一个NVIDIA开源的商用级别的服务框架,个人认为很好用而且很稳定,API接口的变化也不大,我从2020年的20.06切换到2022年的22.06,两个大版本切换,一些涉及到代码的工程变动很少,稍微修改修改就可以直接复用,很方便。本系列讲解的版本也是基于22.06。本系列讲解重点是结合实际的应用场景以及源码分析,以及写一些triton周边的插件、集成等。非速成,适合同样喜欢深入的小
- python opencv cuda tensorrt pytorch之间的版本对应
YIACA
pythonopencvpytorch
python3.7opencv4.4cuda10.2tensorrt7xpytorch1.5DeepStream5.xOpenCV2.x:支持Python2.xOpenCV3.x:支持Python2.7、Python3.xOpenCV4.x:支持Python2.7、Python3.x、Python3.8+CUDA11.x:支持Python3.6、3.7、3.8、3.9CUDA10.2:支持Pyth
- 自动驾驶之心规划控制理论&实战课程
vsdvsvfhf
自动驾驶人工智能机器学习
单目3D与单目BEV全栈教程(视频答疑)多传感器标定全栈系统学习教程多传感器融合:毫米波雷达和视觉融合感知全栈教程(深度学习传统方式)多传感器融合跟踪全栈教程(视频答疑)多模态融合3D目标检测教程(视频答疑)规划控制理论&实战课程国内首个BEV感知全栈系列学习教程首个基于Transformer的分割检测视觉大模型视频课程CUDA与TensorRT部署实战课程(视频答疑)Occupancy从入门到精
- LLM大模型落地-从理论到实践
hhaiming_
语言模型人工智能ai深度学习
简述按个人偏好和目标总结了学习目标和路径(可按需学习),后续将陆续整理出相应学习资料和资源。学习目标熟悉主流LLM(Llama,ChatGLM,Qwen)的技术架构和技术细节;有实际应用RAG、PEFT和SFT的项目经验较强的NLP基础,熟悉BERT、T5、Transformer和GPT的实现和差异,能快速掌握业界进展,有对话系统相关研发经验掌握TensorRT-LLM、vLLM等主流推理加速框架
- 算法学习-2024.8.16
蓝纹绿茶
学习
一、Tensorrt学习补充TensorRT支持INT8和FP16的计算。深度学习网络在训练时,通常使用32位或16位数据。TensorRT则在网络的推理时选用不这么高的精度,达到加速推断的目的。TensorRT对于网络结构进行了重构,把一些能够合并的运算合并在了一起,针对GPU的特性做了优化。一个深度学习模型,在没有优化的情况下,比如一个卷积层、一个偏置层和一个reload层,这三层是需要调用三
- onnx转tensorRT模型出现错误 This version of TensorRT only supports input K as an initializer
lainegates
pytorch人工智能深度学习神经网络
问题onnx模型转tensorRT模型时,出现错误。ThisversionofTensorRTonlysupportsinputKasaninitializer.TryapplyingconstantfoldingonthemodelusingPolygraphgoogle到tensorRT8.6支持了dynamictopk,不会再有这个问题。但项目上限制是tensorRT8.5Problemsc
- trt | torch2trt的使用方式
Mopes__
分享TensorRTtorch2trt
一、安装1.安装tensorrtpython接口下载trt包.tar.gzhttps://developer.nvidia.com/nvidia-tensorrt-5x-download解压tarxvfTensorRT-6.0.1.5.Ubuntu-18.04.x86_64-gnu.cuda-10.1.cudnn7.6.tar.gz安装trtpython接口cdpythonpipinstallte
- 用TensorRT-LLM跑通chatGLM3_6B模型
心瘾こころ
语言模型python
零、参考资料NVIDIA官网THUDM的GithubNVIDIA的Github一、构建TensorRT-LLM的docker镜像gitlfsinstallgitclonehttps://github.com/NVIDIA/TensorRT-LLM.gitcdTensorRT-LLMgitsubmoduleupdate--init--recursivesudomake-Cdockerrelease_
- Ubuntu20.04部署Ollama
stxinu
Nvidia人工智能linux服务器人工智能
在Ubuntu20.04上面安装完RTX4060的NvidiaCuda和TensorRT环境后,就开始跑些大模型看看。下面是安装使用Ollama的过程:安装Ollama:curl-khttps://ollama.com/install.sh|sh执行上面命令,有如下打印:%Total%Received%XferdAverageSpeedTimeTimeTimeCurrentDloadUploadT
- AI秒出图!StableDiffusion Automatic1111正式支持Tensorrt
germandai
人工智能stablediffusion
秒级出图的AI绘画终于支持Automatic1111。今天在AI绘画的开源平台Automatic1111上发布了Tensorrt项目,项目地址是https://github.com/AUTOMATIC1111/stable-diffusion-webui-tensorrt该项目是基于automatic1111的stable-diffusion-webui项目的子项目。基本原理:我们知道,autom
- PyTorch训练,TensorRT部署的简要步骤(采用ONNX中转的方式)
赛先生.AI
TensorRTpytorch人工智能TensorRTONNX
1.简述使用PyTorch执行训练,使用TensorRT进行部署有很多种方法,比较常用的是基于INetworkDefinition进行每一层的自定义,这样一来,会反向促使研究者能够对真个网络的细节有更深的理解。另一种相对简便的方式就是通过ONNX中间转换的形式。本文主要针对该途径进行简单的脉络阐述。2.导出ONNX如果使用的是PyTorch训练框架,可采用其自带的ONNX导出API。torch.o
- ChatGPT引领的AI面试攻略系列:cuda和tensorRT
梦想的理由
深度学习c++chatgpt人工智能面试
系列文章目录cuda和tensorRT(本文)AI全栈工程师文章目录系列文章目录一、前言二、面试题1.CUDA编程基础2.CUDA编程进阶3.性能优化4.TensorRT基础5.TensorRT进阶6.实际应用与案例分析7.编程与代码实践8.高级话题与趋势一、前言随着人工智能技术的飞速发展,该领域的就业机会也随之增多。无论是刚刚踏入这一领域的新手,还是经验丰富的专业人士,都可能面临着各种面试挑战。
- 使用TensorRT在PyTorch项目中加速深度学习推理
从零开始学习人工智能
深度学习pytorch人工智能
在PyTorch项目中使用TensorRT进行深度学习推理通常涉及以下步骤:模型训练:首先,在PyTorch中训练你的深度学习模型。模型导出:训练完成后,将模型从PyTorch导出为ONNX(OpenNeuralNetworkExchange)格式。ONNX是一种用于表示深度学习模型的开放格式,它使得模型可以在不同的深度学习框架之间互操作。模型优化:使用TensorRT优化ONNX模型。Tenso
- [C++]使用C++部署yolov9的tensorrt模型进行目标检测
FL1623863129
C/C++目标检测人工智能计算机视觉
部署YOLOv9的TensorRT模型进行目标检测是一个涉及多个步骤的过程,主要包括准备环境、模型转换、编写代码和模型推理。首先,确保你的开发环境已安装了NVIDIA的TensorRT。TensorRT是一个用于高效推理的SDK,它能对TensorFlow、PyTorch等框架训练的模型进行优化,从而加速模型在NVIDIAGPU上的运行速度。接下来,你需要将YOLOv9的模型转换为TensorRT
- [技术杂谈]Chat With RTX 介绍
FL1623863129
技术杂谈人工智能
英伟达(Nvidia)已于近日发布了名为“ChatwithRTX”的Demo版个性化AI聊天机器人,并在其海外官网渠道中提供了下载链接。据了解,这是一款适用于Windows平台的聊天机器人,由TensorRT-LLM提供支持,完全在本地运行。据官网信息显示,想要安装该聊天机器人应用,用户的系统配置需使用Nvidia的30系/40系显卡(或Ampere/Ada架构的其他显卡),且显存至少为8GB。此
- WhisperFusion:具有超低延迟无缝对话功能的AI系统
语音之家
智能语音人工智能语音识别语言模型
WhisperFusion基于WhisperLive和WhisperSpeech的功能而构建,在实时语音到文本管道之上集成了大型语言模型Mistral(LLM)。LLM和Whisper都经过优化,可作为TensorRT引擎高效运行,从而最大限度地提高性能和实时处理能力。WhiperSpeech是通过torch.compile进行优化的。特征实时语音转文本:利用OpenAIWhisperLive将口
- 心法利器[107] onnx和tensorRT的bert加速方案记录
机智的叉烧
bert人工智能深度学习自然语言处理
心法利器本栏目主要和大家一起讨论近期自己学习的心得和体会,与大家一起成长。具体介绍:仓颉专项:飞机大炮我都会,利器心法我还有。2023年新一版的文章合集已经发布,获取方式看这里:又添十万字-CS的陋室2023年文章合集来袭,更有历史文章合集,欢迎下载。往期回顾心法利器[102]|大模型落地应用架构的一种模式心法利器[103]|大模型badcase修复方案思考心法利器[104]|基础RAG-向量检索
- jetson orin nano 使用yolov8导出engine
coder攻城狮
YOLO
1.导出onnx经过前面训练,得到了best.pt模型,现在想要使用tensorrt进行推理,需要先导出为onnx格式,再转化为engine格式。yoloexportmodel=best.ptformat=onnxopset=12simplify=True2.解决错误在导出过程中,可能会出现错误,cmake版本问题安装好后,默认cmake版本为3.16,需要对cmake进行升级sudopipins
- TensorRT下载安装
Jumy_S
python
TensorRT下载安装一下载地址https://developer.nvidia.com/nvidia-tensorrt-8x-download版本8.2.3GA(成熟稳定版)和8.4.0EA(新功能测试版)以后,有C++和python的API,完全等价可以混用二安装tensorrt的python版本pipinstalltensorrt-8.5.1.7-cp38-none-win_amd64.w
- 安装使用MMDeploy(Python版)
*Major*
人工智能python
安装使用MMDeploy(Python版)一安装MMDeploypythonmmdeploy-main/tools/deploy.pymmdeploy-main/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.pymmdetection/configs/faster_rcnn/faster-rcnn_r50_
- Stable Diffusion教程——使用TensorRT GPU加速提升Stable Diffusion出图速度
知来者逆
StableDiffusionstablediffusionTensorRT人工智能AIGC
概述Diffusion模型在生成图像时最大的瓶颈是速度过慢的问题。为了解决这个问题,StableDiffusion采用了多种方式来加速图像生成,使得实时图像生成成为可能。最核心的加速是StableDiffusion使用了编码器将图像从原始的3512512大小转换为更小的46464大小,从而极大地降低了计算量。它还利用了潜在表示空间(latentspace)上的Diffusion过程,进一步降低了计
- yolov5 torch转tensorrt详解【推荐】
Teng-Sun
YOLO
转化函数#可以在https://github.com/ultralytics/yolov5/blob/master/export.py里面找到defexport_engine(model,im,file,half,dynamic,simplify,workspace=4,verbose=False,prefix=colorstr('TensorRT:')):#YOLOv5TensorRTexpor
- mmdetection模型转onnx和tensorrt实战
dream_home8407
python深度学习人工智能
一,说明1.本次实战使用的是mmdetection算法框架中的Cascase-Rcnn训练的模型;2.模型转换时,运行环境中各种工具的版本要保持一致;3.TensorRT我一直装不上,我用的是镜像环境.参考链接:link二,使用Docker镜像1.0,镜像基础环境构建exportTAG=openmmlab/mmdeploy:ubuntu20.04-cuda11.8-mmdeploydockerpu
- Jetson AGX Orin安装Anaconda,Cuda,Cudnn,pytorch,Tensorrt,ROS
枭玉龙
#ubuntu系统下安装pytorch人工智能python
Anaconda:https://repo.anaconda.com/archive/Cuda:https://forums.developer.nvidia.com/t/pytorch-for-jetson/720481:安装Anaconda3下载:Anaconda3-2021.11-Linux-aarch64.shchmod+xAnaconda3-2021.11-Linux-aarch64.s
- Jetson Xavier NX CUDA、cuDNN、TensorRT与Pytorch环境配置
想努力的人
pytorch人工智能python
橘子大虾关注IP属地:江苏0.1312022.05.1911:31:43字数331阅读3,854torch与vision源码安装包下载链接:https://pan.baidu.com/s/1mrIgGoMo0bq6otGhlh-E3A提取码:6sb31.Cuda、CuDNN和TensorRT在JetsonXavierNx控制台中执行指令#更新软件源sudoaptupdate#安装JetPack组件
- orin nx 安装paddlespeech记录
想努力的人
算法语音合成人工智能
nx配置:模块版本说明CPU8核内存16GCuda版本11.4Opencv版本4.5.4Tensorrt版本5.1Cudnn版本8.6.0.166Deepstream版本6.2Python版本3.8算力100T安装paddlepaddle:去飞桨官网下载jetpack版本的:下载安装Linux推理库-PaddlePaddle深度学习平台当需要调用语速的接口时:需要安装soxbindings包,这个
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc