【优化求解】基于matlab粒子群算法的充电站最优布局【含Matlab源码 012期】

一、简介

电动汽车未来大规模发展需要众多公共充电站服务,公共充电站应根据电动汽车分布进行合理布局。给出电动汽车分布的预测方法,采用基于排队论的充电机配置方法,提出公共充电站布 局最优规划的数学模型。采用与充电站布局有相似数学特点的 Voronoi图划分充电站服务区域,服务区内电动汽车考虑快充随机性,采用排队论 M/M/s模型,以电动汽车排队等候时间为标准确定充电站规模,建立公共充电站布局最优规划模型,​用粒子群算法求解。

二、源码

在这里插入代码clear all; clc; close all
%% 基础数据
bcs=[800 350
    400 350];
​
b=[150.7   140  30
246.3   84  30
263.7   172  20
402.8   120  25
543.4   125  20
644.8   118  30
768.0   85  15
789.7   147  15
905.7   67  15
920.2   126  15
188.4   248  5
276.8   252  10
376.8   248  10
471.0   242  10
559.3   235  10
669.5   229  15
765.1   225  10
836.1   225  10
934.7   195  10
179.7   305  15
231.9   323  7.5
311.6   300  15
389.8   303  7.5
478.2   300  10
576.7   292  10
673.8   285  10
768.0   313  10
872.3   310  15
934.7   245  20
978.1   330  15
195.6   384  12.5
297.1   375  15
394.1   381  15
413.0   345  7.5
556.4   360  2.5
586.9   363  15
681.1   348  15
211.6   461  15
217.4   528  20
311.6   465  10
413.0   455  25
501.4   448  25
588.3   456  5
617.3   430  5
691.2   419  15
778.2   395  15
883.9   376  15
253.6   572  5
346.3   575  25
443.4   555  25
528.9   538  20
628.9   512  15
710.0   509  5
734.7   475  5
912.9   448  30
268.1   656  30
504.3   620  15
652.1   580  10
750.6   565  10
843.4   540  10
949.1   523  10
1043.3   502  10];
​
na=1500; %电动汽车数量
​
alp=0.1;  
b(:,4)=round(alp.*b(:,3)./sum(b(:,3)).*na);%每个需求点平均负荷
%b(23,4)=37;  
​
​
ns=6;
​
mui=0.6;   
Nchz=round(mui.*sum(b(:,4))./ns);
​
​
bm=1.0e+003*[0.0086,0.0088;1.1734,0.0088;1.1734,0.7412;0.0086,0.7412;0.0086,0.0088];
​
​
BL=sqrt(8.2*1.0e6./((max(bm(:,1))-min(bm(:,1)))*(max(bm(:,2))-min(bm(:,2)))));%BL为图坐标与实际坐标的比例,为固定参数。
​
​
%划分成两个区域干嘛呢??????
Area2=1.0e+003 *[0.0086    0.0088
0.9377   -1.0860
0.3103    1.7040
0.0086    0.7412
0.0086    0.0088];
Area2=[Area2,2.*ones(size(Area2,1),1)];%size(Area2,1)=5 ones(5,1)=一个5*1数组
​
Area1=1.0e+003 *[0.9377   -1.0860
1.1734    0.0088
1.1734    0.7412
0.3103    1.7040
0.9377   -1.0860];
Area1=[Area1,1.*ones(size(Area2,1),1)];
​
vv=[Area1;Area2];  %10*3数组 
for k=1:size(bcs,1)%k=1:2
    Ai=find(vv(:,3)==k);%在vv的第三列查找等于k的元素返回索引值
    xx=vv(Ai,1);%横坐标,充电需求点负荷。。。等于k的点 列向量
    yy=vv(Ai,2);
    kk=convhull(xx,yy);%计算凸包,kk是一个列向量
    in=inpolygon(b(:,1),b(:,2),xx(kk),yy(kk));
    b(in,5)=k; 
end
%%
​
​
​
Ep=[];for i=1:size(bcs,1)
    gb=b(b(:,5)==i,:); 
    Ep=[Ep;[sum(gb(:,4)),round(mui.*sum(gb(:,4))./ns),i]]; 
end
​
​
Tn=8;   %最优充电站数量
PopSize=20; %种群数量
MaxIter=400;   %迭代次数
c1s=2.5;   c2s=0.5;
c1e=0.5;   c2e=2.5;
w_start=0.9;   
w_end=0.4;     %惯性权重w取值范围
Iter=1;        
​
​
xmax=max(Area1(:,1)); xmin=min(Area1(:,1));
ymax=max(Area1(:,2)); ymin=min(Area1(:,2));
x = xmin + (xmax-xmin).*rand(Tn,PopSize);
y = ymin + (ymax-ymin).*rand(Tn,PopSize);
​
X=[x;y]; 
V=rand(Tn*2,PopSize);
Vmax=0.1*max((xmax-xmin),(ymax-ymin));  
inAr1=find(b(:,5)==1); 
bb=[b(inAr1,1:2),b(inAr1,4)]; 
for pk=1:1:PopSize
    [FX(pk),~,~,~,~,~,~,~,~,~]=VorCostCDEV(X(1:Tn,pk),X(Tn+1:end,pk),bb,bcs(1,:),BL); %计算适应值
end
PBest=X;
FPBest=FX;
[Fgbest,r]=min(FX);
Fm(Iter)=Fgbest;
CF=Fgbest;    
Best=X(:,r);  
FBest(Iter)=Fgbest;
FgNum=0;
while (Iter<=MaxIter)%粒子群算法
    Iter=Iter+1 %迭代次数
    w_now=((w_start-w_end)*(MaxIter-Iter)/MaxIter)+w_end;%惯性权重
        A=repmat(X(:,r),1,PopSize);    
    
    R1=rand(Tn*2,PopSize);
    R2=rand(Tn*2,PopSize);   
   
    c1=c1e+(c1s-c1e)*(1-acos(-2*Iter/(MaxIter+1)+1)/pi);
    c2=c2e+(c2s-c2e)*(1-acos(-2*Iter/(MaxIter+1)+1)/pi);
        
    
    V=w_now*V+c1*R1.*(PBest-X)+c2*R2.*(A-X); %粒子速度更新公式
    
   
    changeRows=V>Vmax;
    V(changeRows)=Vmax;
   
    changeRows=V<-Vmax;
    V(changeRows)=-Vmax;
    
    
    X=X+1.0*V;for pk=1:1:PopSize
       [FX(pk),~,~,~,~,~,~,~,~,~]=VorCostCDEV(X(1:Tn,pk),X(Tn+1:end,pk),bb,bcs(1,:),BL);
   end
​
    
    P=FX<FPBest;    
    FPBest(P)=FX(P);  
    PBest(:,P)=X(:,P); 
    
    [Fgbest,r]=min(FPBest);
    Fm(Iter)=Fgbest;        
    
    if Fgbest<CF 
        [FBest,gr]=min(FPBest);  
        Best=PBest(:,gr);    
        CF=Fgbest;  
        FgNum=0;
    else
        FgNum=FgNum+1; 
    end
    
    
    if FgNum>10    
        SubX=r;
        while SubX==r || SubX==0
            SubX=round(rand*(PopSize));
        end
        r=SubX;
        FgNum=0;
    end
    
end 
FBest  
Best  
Fm' 
x =Best(1:Tn);
y =Best(Tn+1:end);
[Fcost,CCS,fcs,ucs,NchI,Epc,CVT,CVTI,CDL,CDLI]=VorCostCDEV(x,y,bb,bcs(1,:),BL)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%作图
figure(1)
a=imread('map1.png');
imshow(a);   
hold on
[vxT,vyT]=VoronoiT(bcs(:,1),bcs(:,2),0);   
plot(bcs(:,1),bcs(:,2),'ks','linewidth',12);
% plot(vxT,vyT,'k-','linewidth',3);plot(b(:,1),b(:,2),'k*','linewidth',1)   
plot(bm(:,1),bm(:,2),'k-','linewidth',1)for k=1:length(b(:,4))
    str=num2str(b(k,4));
    text(b(k,1)-15,b(k,2)+25,str,'FontSize',5,'color','black');
end
​
for k=1:size(bcs,1)
    str=num2str(k);
    text(bcs(k,1)+20,bcs(k,2),str,'FontSize',20,'color','red');
 end
axis equal
​
​
[vx,vy]=voronoi(x,y);
plot(x,y,'b^',vx,vy,'b-','linewidth',3); 
for k=1:length(x)
    str=num2str(k);
    text(x(k),y(k),str,'FontSize',20,'color','red');
 end
axis equal
vv=VoronoiArea([x,y],3);
​
bax=b(:,1:2);
for k=1:length(x)
    Ai=find(vv(:,3)==k);
    xx=vv(Ai,1);
    yy=vv(Ai,2);
    kk=convhull(xx,yy); 
    in=inpolygon(bax(:,1),bax(:,2),xx(kk),yy(kk));
    str=num2str(k);
    text(bax(in,1),bax(in,2),str,'FontSize',18,'color','blue');
end
axis([min(bm(:,1))-3 max(bm(:,1))+3 min(bm(:,2))-3 max(bm(:,2))+3])figure(2)
Iter_t=1:1:MaxIter+1;
plot(Iter_t,Fm,'.-')

三、运行结果

在这里插入图片描述

四、备注

完整代码或者代写添加QQ2449341593
往期回顾>>>>>>
【优化求解】基于matlab粒子群优化灰狼算法【含Matlab源码 006期】
【优化求解】基于matlab多目标灰狼优化算法MOGWO 【含Matlab源码 007期】

你可能感兴趣的:(matlab,优化求解)