- Python实现简单的机器学习算法
master_chenchengg
pythonpython办公效率python开发IT
Python实现简单的机器学习算法开篇:初探机器学习的奇妙之旅搭建环境:一切从安装开始必备工具箱第一步:安装Anaconda和JupyterNotebook小贴士:如何配置Python环境变量算法初体验:从零开始的Python机器学习线性回归:让数据说话数据准备:从哪里找数据编码实战:Python实现线性回归模型评估:如何判断模型好坏逻辑回归:从分类开始理论入门:什么是逻辑回归代码实现:使用skl
- Python前沿技术:机器学习与人工智能
4.0啊
Python人工智能python机器学习
Python前沿技术:机器学习与人工智能一、引言随着科技的飞速发展,机器学习和人工智能(AI)已经成为了计算机科学领域的热门话题。Python作为一门易学易用且功能强大的编程语言,已经成为了这两个领域的首选语言之一。本文将深入探讨Python在机器学习和人工智能领域的应用,以及一些前沿技术和工具。二、Python机器学习基础2.1机器学习概述机器学习是人工智能(AI)的一个关键子集,它的核心在于让
- Python自动化办公2.0 即将发布
百里图书
自动化人工智能python
第一节课:数据整理与清洗第二节课:数据筛选、过滤与排序第三节课:高级数据处理技巧第四节课:数据可视化与实践案例第五节课:统计分析与报表第六节:常见的Excel报表与下方的课程形成知识体系:Python自动化办公(面向2020,Python3.7,不断更新ing)_在线视频教程-CSDN程序员研修院https://edu.csdn.net/course/detail/28031Python机器学习教
- 【Python机器学习】循环神经网络(RNN)——传递数据并训练
zhangbin_237
Python机器学习机器学习pythonrnn人工智能开发语言深度学习神经网络
与其他Keras模型一样,我们需要向.fit()方法传递数据,并告诉它我们希望训练多少个训练周期(epoch):model.fit(X_train,y_train,batch_size=batch_size,epochs=epochs,validation_data=(X_test,y_test))因为个人小电脑内存不足,所以吧maxlen参数改成了100重新运行。保存模型:model_struc
- 【Python机器学习】循环神经网络(RNN)——对RNN进行预测
zhangbin_237
Python机器学习机器学习pythonrnn深度学习人工智能自然语言处理
目录有状态性双向RNN编码向量如果有一个经过训练的模型,接下来就可以对其进行预测:sample_1="""Ihatethatthedismalweatherhadmedownforsolong,whenwillitbreak!Ugh,whendoeshappinessreturn?Thesunisblindingandthepuffycloudsaretoothin.Ican'twaitforth
- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 【Python机器学习】机器学习任务中常见的数据异质问题和模型异构问题是什么?解决策略是什么?
惊鸿若梦一书生
Python机器学习python深度学习开发语言
文章目录数据异质模型异构数据异质数据异质问题(Heterogeneityindata)通常指数据集内部的不一致性,这些不一致性可能来自多种源。在实际应用中,数据异质性可以表现为多种形式,包括:不同来源的数据:数据可能来自不同的数据源,每个源可能采用不同的数据收集方法和标准。例如,社交媒体数据和传统调查数据就可能有很大的差异。不同类型的数据:数据可以是结构化的(例如,数据库中的表格数据),半结构化的
- 【Python机器学习】卷积神经网络(CNN)的工具包
zhangbin_237
Python机器学习机器学习pythoncnn神经网络自然语言处理开发语言
Python是神经网络工具包最丰富的语言之一。两个主要的神经网络架构分别是Theano和TensorFlow。这两者的底层计算深度依赖C语言,不过它们都提供了强大的PythonAPI。Torch在Python里面也有一个对应的API是PyTorch。这些框架都是高度抽象的工具集,适用于从头构建模型。Python社区开发了一些第三方库来简化这些底层架构的使用。其中Keras在API的友好性和功能性方
- 【Python机器学习】卷积神经网络(CNN)
zhangbin_237
Python机器学习机器学习pythoncnn开发语言自然语言处理
卷积神经网络(CNN)得名于在数据样本上用滑动窗口(或卷积)的概念。卷积在数学中应用很广泛,通常与时间序列数据相关。它是用一个可视化盒子在一个区域内滑动,如下图所示:构建块卷积神经网络最早出现在图像处理和图像识别领域,它能够捕捉每个样本中数据点之间的空间关系,也就能识别出图像中是猫还是狗。卷积网络,也称为convnet,不像传统的前馈网络那样对每个元素(图中的像素)分配权重,而是定义了一组在图像上
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- 【Rust】——采用发布配置自定义构建
Y小夜
Rust(官方文档重点总结)rust开发语言后端
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,Python机器学习等主页链接:Y小夜-CSDN博客今日学习推荐:在当今这个飞速发展的信息时代,人工智能(AI)已经成为了一个不可或
- 【Rust】——高级类型
Y小夜
Rust(官方文档重点总结)rust开发语言后端
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,Python机器学习等主页链接:Y小夜-CSDN博客目录为了类型安全和抽象而使用的newtype模式类型别名用来创建类型同义词不返回
- 【Python机器学习】NLP词频背后的含义——隐性语义分析
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能开发语言
隐性语义分析基于最古老和最常用的降维技术——奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。SVD的一个应用是求逆矩阵。一个矩阵可以分解成3个最简单的方阵,然后对这些方阵求转置后再把它们相乘,就得到了原始矩阵的逆矩阵。它为我们提供了一个对大型复杂矩阵求逆的捷径。SVD适用于桁架结构的应力和应变分析等机械工程问题,它对电气工程中的电路分析也很有用,它甚至在数据科学中被用于基
- 【Python机器学习】NLP分词——利用分词器构建词汇表(三)——度量词袋之间的重合度
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python开发语言
如果能够度量两个向量词袋之间的重合度,就可以很好地估计他们所用词的相似程度,而这也是它们语义上重合度的一个很好的估计。因此,下面用点积来估计一些新句子和原始的Jefferson句子之间的词袋向量重合度:importpandasaspdsentence="""ThomasJeffersonBeganbulidingMonticelliastheageof26.\n"""sentence=senten
- 【Python机器学习】NLP概述——深度处理
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能机器人
自然语言处理流水线的各个阶段可以看作是层,就像是前馈神经网络中的层一样。深度学习就是通过在传统的两层机器学习模型架构(特征提取+建模)中添加额外的处理层来创建更复杂的模型和行为。上图中,前四层对应于聊天机器人流水线中的前两个阶段(特征提取和特征分析)。例如,词性标注(POS标注)是在聊天机器人流水线的分析阶段生成特征的一种方法。POS标签由默认的SpaCY流水线自动生成,该流水线包括上图中所有的前
- 【Python机器学习】NLP分词——词干还原的挑战
zhangbin_237
Python机器学习自然语言处理人工智能机器学习python开发语言
要想使用自然语言处理的相关应用,第一件事就是需要一个强大的词汇表。我们要把文档或任何字符串拆分为离散的有意义的词条,这里说的词条仅限于词、标点符号和数值,但是这里使用的技术可以很容易推广到字符序列包含的任何其他有意义的单元,比如ASCII表情符号、Unicode表情符号和数学符号。从文档中检索词条需要一些字符串处理方法,这些方法不仅仅是str.split(),处理时需要把标点符号与词分开,还需要将
- 【Python机器学习】NLP概述——自然语言智商
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python机器人
就像人类的智能一样,如果不考虑多个智能维度,单凭一个智商分数是无法轻易衡量NLP流水线的能力的。衡量机器人系统能力的一种常见方法是:根据系统行为的复杂性和所需的人类监督成都这两个维度来衡量。但是对自然语言处理流水线而言,其目标是建立一个完全自动化的自然语言处理系统,会消除所有的人工监督(一旦模型被训练和部署)。因此,一对更好的IQ维度应该能捕捉到自然语言流水线复杂的广度和深度。像Alexa或All
- 【Python机器学习】NLP概述——聊天机器人的自然语言流水线
zhangbin_237
Python机器学习自然语言处理机器人人工智能python机器学习
构建对话引擎或者聊天机器人所需的NLP流水线类似于某些问答系统。聊天机器人需要4个处理阶段和一个数据库来维护过去语句和回复的记录。这4个处理阶段中的每个阶段都可以包含一个或多个并行或串行工作的处理算法。如下图所示:1、解析:从自然语言文本中提取特征、结构化数值数;2、分析:通过对文本的情感、语法合法度及语义打分,生成和组合特征;3、生成:使用模板、搜索或语言模型生成可能的回复;4、执行:根据对话历
- 《Python机器学习项目实战》书籍介绍
袁袁袁袁满
python机器学习开发语言
文章目录书籍介绍主要内容书籍目录书籍介绍《Python机器学习项目实战》带领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。《Python机器学习项目实战》完全满足这三点!《Python机器学习项目实战》展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关
- 【Python机器学习】NLP的部分实际应用
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python大数据
自然语言处理在现实中非常多的应用,下表是其中的一些例子:应用示例1示例2示例3搜索web文档自动补全编辑拼写语法风格对话聊天机器人助手行程安排写作索引用语索引目录电子邮件垃圾邮件过滤分类优先级排序文本挖掘摘要知识提取医学诊断法律法律断案先例搜索传票分类新闻事件检索真相核查标题排字归属剽窃检测文字取证风格指导情感分析团队士气监控产品评论分类客户关怀行为预测金融选举预测营销创作电影脚本诗歌歌词如果在索
- python清华大学出版社答案_Python机器学习及实践
weixin_39805119
python清华大学出版社答案
第1章机器学习的基础知识1.1何谓机器学习1.1.1传感器和海量数据1.1.2机器学习的重要性1.1.3机器学习的表现1.1.4机器学习的主要任务1.1.5选择合适的算法1.1.6机器学习程序的步骤1.2综合分类1.3推荐系统和深度学习1.3.1推荐系统1.3.2深度学习1.4何为Python1.4.1使用Python软件的由来1.4.2为什么使用Python1.4.3Python设计定位1.4.
- Python机器学习笔记:CART算法实战
战争热诚
完整代码及其数据,请移步小编的GitHub传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言在python机器学习笔记:深入学习决策树算法原理一文中我们提到了决策树里的ID3算法,C4.5算法,并且大概的了
- python机器学习库Scikit-learn
崔吉龙
python语言中用来处理机器学习的库最重要的就是Scikit-learn,简称sklearn。被大多数科学家所钟爱,包括了构建良好的学习算法、误差函数和测试例程。在sklearn的核心有四种类型的类覆盖了所有机器学习功能:分类回归聚类分组转换数据虽然sklearn提供的算法比较多,但是他们都符合基本的接口定义,为了是使用不同的算法时,所使用的接口时统一的。sklearn提供了四个基本对象接口。评
- optuna,一个好用的Python机器学习自动化超参数优化库
牵着猫散步的鼠鼠
python开发语言
️个人主页:鼠鼠我捏,要死了捏的主页️付费专栏:Python专栏️个人学习笔记,若有缺误,欢迎评论区指正前言超参数优化是机器学习中的重要问题,它涉及在训练模型时选择最优的超参数组合,以提高模型的性能和泛化能力。Optuna是一个用于自动化超参数优化的库,它提供了有效的参数搜索算法和方便的结果可视化工具。目录前言
- 【机器学习笔记】 6 机器学习库Scikit-learn
RIKI_1
机器学习机器学习笔记scikit-learn
Scikit-learn概述Scikit-learn是基于NumPy、SciPy和Matplotlib的开源Python机器学习包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数据分析师首选的机器学习工具包。自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学习算法。
- Python机器学习:Scikit-learn库与应用
数据小爬虫
api电商api机器学习pythonscikit-learn开发语言运维服务器
当涉及到Python机器学习时,Scikit-learn是一个非常流行且功能强大的库。它提供了广泛的算法和工具,使得机器学习变得简单而高效。下面是一个简单的Scikit-learn库与应用示例,其中包括代码。首先,确保你已经安装了Scikit-learn库。你可以使用pip命令来安装它:bash复制代码pipinstallscikit-learn接下来,我们将使用Scikit-learn来执行一个
- 见世面的成本有多低?这几个技术公众号告诉你答案
傅一平
独乐乐,不如众乐乐,为您精选以下公众号!人工智能爱好者社区专注人工智能、机器学习、数据科学等顶尖技术前沿科技成果研究、实战技巧。每周会有书豪采访记系列采访技术大佬文章和原创漫画文章,立即关注,掌握人工智能最新资讯与成果。号主是《R数据科学实战:工具详解与案例分析》书籍作者。大数据分析挖掘和Python机器学习商业智能BI、数据分析、数据挖掘、大数据、Python、机器学习、深度学习、算法等技术分享
- 如何安装Pytorch,CPU版本和GPU版本的安装流程。
JayGboy
pytorch人工智能python
1.PyTorch简介:PyTorch是一个开源的Python机器学习框架,专注于深度学习任务。它由Facebook的人工智能研究团队开发并维护,提供了丰富的工具和库,用于构建和训练各种深度神经网络模型。PyTorch使用动态计算图的概念,允许用户在运行时动态地定义、修改和调试计算图。这种灵活性使得模型构建和调试更加直观和方便,同时也支持更复杂的模型结构和控制流程。PyTorch采用Pythoni
- Python机器学习之交叉验证
一只怂货小脑斧
交叉验证是一种非常常用的对于模型泛化能力进行评估方法,交叉验证既可以解决数据集的数据量不够大问题,也可以解决参数调优的问题。常用的交叉验证方法有:简单交叉验证(HoldOut检验,例如train_test_split)、k折交叉验证(例如KFold)、自助法kfold是将数据集划分为K-折,只是划分数据集;cross_val_score是根据模型进行计算,计算交叉验证的结果,你可以简单认为就是cr
- 浏览器F12调试
知行合一。。。
测试技术功能测试
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录1浏览器F12开发者工具1.1F12开发者工具基本介绍1.2F12常规设置2标签页2.1Elements查看器2.2Network网络2.3Network抓包分析案例1:以登录百度账号
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">