- 使用LLaVa和Ollama实现多模态RAG示例
llzwxh888
python人工智能开发语言
本文将详细介绍如何使用LLaVa和Ollama实现多模态RAG(检索增强生成),通过提取图像中的结构化数据、生成图像字幕等功能来展示这一技术的强大之处。安装环境首先,您需要安装以下依赖包:!pipinstallllama-index-multi-modal-llms-ollama!pipinstallllama-index-readers-file!pipinstallunstructured!p
- 如何给QQ邮箱自动发邮件?无惧「小爱」下线!代码全公开,两步搞定
AI码上来
AI实战微信人工智能python
前两天,搞了个微信AI小助理-小爱(AI),爸妈玩的不亦乐乎。零风险!零费用!我把AI接入微信群,爸妈玩嗨了,附教程(下)最近一直在迭代中,挖掘小爱的无限潜力:链接丢给它,精华吐出来!微信AI小助理太强了,附完整提示词拥有一个能倾听你心声的「微信AI小助理」,是一种什么体验?小爱打工,你躺平!让「微信AI小助理」接管你的文件处理,一个字:爽!我把多模态大模型接入了「小爱」,痛快来一场「表情包斗图」
- 腾讯发表多模态综述,一文详解多模态大模型
存内计算开发者社区
多模态大模型人工智能chatgptAIGC量子计算AI-nativegptagi
多模态大语言模型(MLLM)是近年来兴起的一个新的研究热点,它利用强大的大语言模型作为大脑来执行多模态任务。MLLM令人惊讶的新兴能力,如基于图像写故事和无OCR的数学推理,在传统方法中是罕见的,这表明了一条通往人工通用智能的潜在道路。在本文中,追踪多模态大模型最新热点,讨论多模态关键技术以及现有在情绪识别上的应用。腾讯AILab发表了一篇关于多模态大模型的最新综述《MM-LLMs:RecentA
- 基于深度学习的文本引导的图像编辑
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的文本引导的图像编辑(Text-GuidedImageEditing)是一种通过自然语言文本指令对图像进行编辑或修改的技术。它结合了图像生成和自然语言处理(NLP)的最新进展,使用户能够通过描述性文本对图像内容进行精确的调整和操控。1.文本引导的图像编辑的挑战文本和图像之间的对齐:如何将文本中的语义信息准确地映射到图像中的特定区域或元素是一个关键挑战。这涉及到多模态数据的对齐和理解。编
- 多模态Transformer之文本与图像联合建模 - Transformer教程
shandianfk_com
ChatGPTTransformertransformer深度学习人工智能
大家好,今天我们来聊聊一个既前沿又有趣的话题——多模态Transformer,特别是文本与图像的联合建模。对于很多小伙伴来说,Transformer这个词已经不陌生了,但它不仅仅应用于自然语言处理,还能在图像处理、甚至是多模态数据的处理上大显身手。接下来,我会带大家深入了解什么是多模态Transformer,以及它是如何实现文本与图像的联合建模的。Transformer简介首先,我们简单回顾一下T
- 【人工智能】多模态AI:如何通过融合文本、图像与音频重塑智能系统未来
2的n次方_
小水文人工智能图像处理
我的主页:2的n次方_随着人工智能技术的飞速发展,多模态AI逐渐成为构建智能系统的重要方向。传统的AI系统通常依赖于单一模态的数据,如文本、图像或音频。而多模态AI通过结合多种数据类型,能够在更复杂的场景下提供更智能的解决方案。本文将深入探讨多模态AI的原理、应用场景及其未来发展,并通过代码示例展示如何构建一个多模态AI系统。1.多模态AI的基本原理多模态AI的核心在于融合来自不同模态(如文本、图
- 多模态大模型微调Qwen-VL微调及日志
Messi^
人工智能-大模型应用python人工智能深度学习
%pipinstallmodelscope-U%pipinstalltransformersacceleratetiktoken-U%pipinstalleinopstransformers_stream_generator-U%pipinstallpillow-U%pipinstalltorchvision%pipinstallmatplotlib-Ufrommodelscopeimport(s
- 基于深度学习的多模态信息检索
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的多模态信息检索(MultimodalInformationRetrieval,MMIR)是指利用深度学习技术,从包含多种模态(如文本、图像、视频、音频等)的数据集中检索出满足用户查询意图的相关信息。这种方法不仅可以处理单一模态的数据,还可以在多种模态之间建立关联,从而更准确地满足用户需求。1.多模态信息检索的挑战异构数据表示:多模态数据通常具有不同的特征和表示形式(如文本的词嵌入与图
- [AI资讯·0605] GLM-4系列开源模型,OpenAI安全疑云,ARM推出终端计算子系统,猿辅导大模型备案……
老牛同学
AI人工智能ai大模型AI资讯
AI资讯1毛钱1百万token,写2遍红楼梦!国产大模型下一步还想卷什么?AI「末日」突然来临,公司同事集体变蠢!只因四大聊天机器人同时宕机OpenAI员工们开始反抗了!AI手机PC大爆发,Arm从软硬件到生态发力,打造行业AI百宝箱GLM-4开源版本:超越Llama3,多模态比肩GPT4V,MaaS平台也大升级猿辅导竟然是一家AI公司?大模型全家桶曝光|甲子光年FineChatBI,帆软在AI方
- 文本生成图像工作简述1--概念介绍和技术梳理
尹凯
姓名:尹凯学号:22011210590学院:通信工程学院原文链接:https://blog.csdn.net/air__Heaven/article/details/127302735【嵌牛导读】文本生成图像的概念介绍与技术梳理【嵌牛鼻子】文本生成图像基于深度学习的机器学习方法已经在语音、文本、图像等单一模态领域取得了巨大的成功,而同时涉及到多种输入模态的多模态机器学习研究有巨大的应用前景和广泛的
- 多模态大语言模型(MLLMs)-一般架构(非常详细)零基础入门到精通,收藏这一篇就够了
程序员_大白
语言模型人工智能自然语言处理
多模态大语言模型(MultimodalLargeLanguageModel,MLLM),在LLM原有的强大泛化和推理能力基础上,进一步引入了多模态信息处理能力。相比于以往的多模态方法,例如以CLIP为代表的判别式,或以OFA为代表的生成式,新兴的MLLM展现出一些典型的特质,在下面这两种特质的加持下,MLLM涌现出一些以往多模态模型所不具备的能力!模型大。MLLM通常具有数十亿的参数量,更多的参数
- 大规模语言模型从理论到实践 vLLM推理框架实践
AGI通用人工智能之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践:vLLM推理框架实践1.背景介绍1.1问题的由来随着大规模语言模型(LargeLanguageModels,vLLMs)的发展,从简单的语言生成到复杂的多模态任务,这些模型的能力得到了显著提升。然而,如何高效地利用这些模型进行推理成为了新的挑战。传统的方法往往受限于模型的输入长度、计算资源的限制以及缺乏有效的任务分解策略。为了解决这些问题,vLLM推理框架应运而生,旨在
- 大模型中的多模态概念指的是什么
张3蜂
计算机视觉人工智能深度学习
大模型中的多模态(Multimodal)概念是指模型能够同时处理和理解来自多种类型的数据或信息模式(modalities),如文本、图像、音频、视频等。这种模型不仅可以从单一模态(如仅文本或仅图像)中学习,还能够结合多种模态的数据,从而增强模型的理解能力和表现。以下是一些与多模态相关的核心概念:模态(Modalities):指的是数据的不同形式或类型。常见的模态包括:文本(Text):自然语言文本
- 百行代码复现扩散模型-基于线性回归
李新然
数据统计分析深度学习线性回归算法回归python数据分析
文章目录引言简化模型原本模型模型改造实现过程数据集文本编码图像编码解码扩散过程训练过程生成过程完整实现结论引言多模态的深度学习模型,通常需要大量的算力去训练和验证。这导致缺乏算力的普通读者,阅读“大模型”论文,只能按论文作者所写来构造自己的认知。可能对很多类似笔者的人来说:纸上得来终觉浅。或许我们可以退而求其次,只选择Follow论文的思路。本文以DiffusionModel为例,说明从核心思想来
- 新技术前沿-2024-国内主流AI大模型架构及应用场景深度分析
皮皮冰燃
新技术前沿人工智能
参考国内主流AI大模型架构及应用场景深度分析20241厂商总览1.1国外(1)OpenAI:GPT-4【美国旧金山的人工智能研究公司】GPT-4于2023年3月14日发布,是千亿级参数的多模态预训练模型,能够支持图像和文本的输入。(2)Anthropic(人类的):Claude【美国人工智能初创公司】Claude于2023年3月14日发布,是Anthropic开发的类似ChatGPT的聊天机器人,
- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.25-2024.08.01
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理VLM大语言模型计算机视觉视觉语言模型
文章目录~1.PayingMoreAttentiontoImage:ATraining-FreeMethodforAlleviatingHallucinationinLVLMs2.MTA-CLIP:Language-GuidedSemanticSegmentationwithMask-TextAlignment3.MarvelOVD:MarryingObjectRecognitionandVisi
- Python的情感词典情感分析和情绪计算
yava_free
python大数据人工智能
一.大连理工中文情感词典情感分析(SentimentAnalysis)和情绪分类(EmotionClassification)都是非常重要的文本挖掘手段。情感分析的基本流程如下图所示,通常包括:自定义爬虫抓取文本信息;使用Jieba工具进行中文分词、词性标注;定义情感词典提取每行文本的情感词;通过情感词构建情感矩阵,并计算情感分数;结果评估,包括将情感分数置于0.5到-0.5之间,并可视化显示。目
- 【Python】成功解决IndexError: list index out of range
高斯小哥
BUG解决方案合集pythonlist新手入门学习debug
【Python】成功解决IndexError:listindexoutofrange下滑查看解决方法欢迎莅临我的个人主页这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!博主简介:985高校的普通本硕,曾有幸发表过人工智能领域的中科院顶刊一作论文,熟练掌握PyTorch框架。技术专长:在CV、NLP及多模态等领域有丰富的项目实战经验。已累计一对一为数百位用户提供近千次专业服务,助力他们少走
- 使用Python和Jieba库进行中文情感分析:从文本预处理到模型训练的完整指南
快撑死的鱼
Python算法精解python人工智能开发语言
使用Python和Jieba库进行中文情感分析:从文本预处理到模型训练的完整指南情感分析(SentimentAnalysis)是自然语言处理(NLP)领域中的一个重要分支,旨在从文本中识别出情绪、态度或意见等主观信息。在中文文本处理中,由于语言特性不同于英语,如何高效、准确地分词和提取关键词成为情感分析的关键步骤之一。在这篇文章中,我们将深入探讨如何使用Python和Jieba库进行中文情感分析,
- 多模态大模型论文总结
sudun_03
语言模型算法人工智能
MM1:Methods,Analysis&InsightsfromMultimodalLLMPre-training在这项工作中,我们讨论了建立高性能的多模态大型语言模型(MLLMs)。特别是,我们研究了各种模型结构组件和数据选择的重要性。通过对图像编码器、视觉语言连接器和各种预训练数据选择的仔细而全面的验证,我们确定了几个关键的设计教训。例如,我们证明,与其他已发表的多模式预训练结果相比,对于使
- 大语言模型为什么这么强?关键步骤是……
青花科技
语言模型人工智能自然语言处理
作者主页:青花锁简介:Java领域优质创作者、Java微服务架构公号作者简历模板、学习资料、面试题库、技术互助文末获取联系方式目录前言什么是大模型1.1、具备涌现能力1.2、多模态能力增强2、预训练往期热门专栏回顾前言研究人员发现,随着语言模型参数量的不断增加,模型完成各个任务的效果也得到不同程度的提升。什么是大模型大语言模型是指模型参数量超过一定规模的语言模型,相比参数量较小的预训练模型(如BE
- 【专题】2024年中国AI人工智能基础数据服务研究报告合集PDF分享(附原数据表)
拓端研究室
人工智能
原文链接:https://tecdat.cn/?p=37516随着人工智能技术的迅猛发展,AI基础数据服务行业迎来了前所未有的发展机遇。报告合集显示,2023年中国AI基础数据服务市场规模达到45亿元,且未来五年复合增长率有望达到30.4%。多模态大模型、长文本处理能力提升以及大模型小型化技术成为AI领域热点研究方向,从而推动了对高质量数据的大量需求。阅读原文,获取专题报告合集全文,解锁文末403
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- 【自然语言处理】自然语言处理NLP概述及应用
@我们的天空
人工智能技术nlp人工智能深度学习python机器学习自然语言处理scikit-learn
自然语言处理(NaturalLanguageProcessing,简称NLP)是一门集计算机科学、人工智能以及语言学于一体的交叉学科,致力于让计算机能够理解、解析、生成和处理人类的自然语言。它是人工智能领域的一个关键分支,旨在缩小人与机器之间的交流障碍,使得机器能够更有效地识别并响应人类的自然语言指令或内容。自然语言处理NLP概述基本任务:文本分类:将文本划分为预定义的类别,如情感分析、主题分类等
- 多模态视野:探索Qwen-VL的70亿参数世界
努力犯错
人工智能计算机视觉深度学习gpt-3语言模型
引言在人工智能的迅猛发展中,多模态大模型成为了新的研究热点。阿里云推出的Qwen-VL模型,就是在这一领域的重要突破。作为一款基于70亿参数的通义千问模型Qwen-7B开发的多模态视觉语言模型,Qwen-VL不仅在技术上实现了创新,更在多模态任务评测中展现出卓越的性能。官网demo技术特点Qwen-VL模型的核心在于其多模态理解能力。它能够同时处理图像和文本信息,实现更加全面和深入的数据解析。这一
- 开源AI图像识别:支持扫描文件批量识别快速对接数据库存储
思通数科x
人工智能计算机视觉图像处理OCR文本识别
随着数字化转型的不断深入,图像识别技术在各行各业中的应用越来越广泛。文件封识别作为图像识别技术的一个分支,能够有效地提高文件处理的自动化程度和准确性。本文将探讨文件封识别技术的原理、应用场景以及如何将识别后的内容批量对应数据库字段进行存储。开源项目介绍(可本地部署,支持国产化)思通数科研发了一款多模态AI能力引擎,专注于提供自然语言处理(NLP)、情感分析、实体识别、图像识别与分类、OCR识别和语
- 垂类大模型:领域专家参与的重要性
澳鹏Appen
生成式AI人工智能与机器学习人工智能AI生成式AI
随着人工智能(AI)的不断发展,训练数据的完整性和质量至关重要。早期的AI模型专注于处理和分析任务,如图像识别、语音识别和情感分析。这些模型通常是在大型数据集上训练的,标注任务多可以由具有一般技能的人类执行,早期模型中的缺陷可以被标注员轻松识别和纠正。然而近年,AI领域经历了重大变革。当代模型被设计用于更复杂的功能,如推理和总结,旨在处理需要更高认知参与的复杂和多样化场景。这些先进模型不仅需要原始
- python项目实战之基于深度学习的电影评论情感分析系统
什么任性
python深度学习开发语言djangoflaskhtml5javascript
一、引言在信息爆炸的时代,用户生成的内容(UGC)如社交媒体、博客和论坛上的评论等,已经成为产品或服务口碑的重要来源。情感分析是一种自然语言处理(NLP)技术,用于识别和提取文本中的情感信息,从而理解大众对特定话题的态度。基于深度学习的电影评论情感分析系统能够自动分类评论的情感倾向,如正面、负面或中性,为电影制片人、营销人员和观众提供有价值的见解。二、技术栈和框架前端HTML/CSS:用于构建静态
- 多模态大模型:技术原理与实战 ChatGPT的诞生
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战ChatGPT的诞生作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习在NLP中的应用1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2预训练语言模型的发展1.3.3GPT系
- 微软推出Phi-3.5系列AI模型
百态老人
microsoft人工智能
是的,微软确实推出了Phi-3.5系列AI模型。这一系列包括三款轻量级AI模型:Phi-3.5-MoE、Phi-3.5-vision和Phi-3.5-mini。这些模型基于合成数据和经过过滤的公开网站构建,上下文窗口为128K。具体来说,Phi-3.5-MoE是该系列中的首个混合专家模型(MoE),具有显著的性能优势。Phi-3.5-vision则是一款多模态AI模型,能够同时处理文本和视觉输入。
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam