前言
我们知道,CountDownLatch的计数器是一次性的,它不能重置。也就是说,当count值变为0时,再调用await()方法会立即返回,不会阻塞。
本文要说的CyclicBarrier就是一种可以重置计数器的线程同步工具类。CyclicBarrier字面意思是“回环屏障”,它可以让一组线程全部到达一个状态后再全部同时往下执行。之所以叫回环是因为当所有线程执行完毕,并重置CyclicBarrier的状态后它可以被重用。而之所以叫屏障是因为当某个线程调用await方法后就会被阻塞,这个阻塞点就称为屏障,等其他所有线程都调用了await方法后,这组线程就会一起冲破屏障,并往下执行。
使用场景
两个子任务分别执行自己的工作,等它们都执行完后,主任务汇总子任务的结果,并做一些处理,处理完成后两个子任务又继续做其他事情。示例代码:
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierDemo {
private static CyclicBarrier cyclicBarrier = new CyclicBarrier(2, () -> {
try {
System.out.println("main task merge subtask result begin");
// simulate merge work
Thread.sleep(5000);
System.out.println("main task merge subtask result finished");
} catch (InterruptedException e) {
// ignore
}
});
public static void main(String[] args) {
Thread thread1 = new Thread(() -> {
try {
Thread.sleep(4000);
System.out.println("thread1 finished its work");
cyclicBarrier.await();
System.out.println("thread1 continue work");
} catch (InterruptedException | BrokenBarrierException e) {
// ignore
}
});
Thread thread2 = new Thread(() -> {
try {
Thread.sleep(5000);
System.out.println("thread2 finished its work");
cyclicBarrier.await();
System.out.println("thread2 continue work");
} catch (InterruptedException | BrokenBarrierException e) {
// ignore
}
});
thread1.start();
thread2.start();
}
}
可以看到,线程1和线程2调用await()时,会被阻塞,等主线程任务完成后,线程1和线程2就会冲破屏障,继续往下执行。这里的主线程合并工作是可选的,也就是说可以直接new CyclicBarric(int parties),这种情况下就没有到达屏障后的合并工作,会直接在全部线程到达屏障后同时冲破屏障往下执行。可以比喻成举办同学聚会的场景。有20个人参加聚会,第1个人到达集合地点后要等其他人,第2个,第3个,...第19个人也需要等,当最后一个人到的时候,全部的20个人就可以出发去嗨皮了。
上面介绍的是“屏障”的应用场景,再来看个“回环”的应用场景。
假设一个任务由阶段1,阶段2,阶段3这三个阶段组成,每个线程都串行的依次执行阶段1,2,3。当多个线程执行任务时,必须保证等所有线程都执行完阶段1后,才能执行阶段2,同样地,也必须保证所有线程都执行完阶段2后,才能执行阶段3。示例代码:
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierDemo2 {
private static CyclicBarrier cyclicBarrier = new CyclicBarrier(2);
public static void main(String[] args) {
Thread thread1 = new Thread(() -> {
try {
System.out.println("thread1 step 1");
cyclicBarrier.await();
System.out.println("thread1 step 2");
cyclicBarrier.await();
System.out.println("thread1 step 3");
} catch (InterruptedException | BrokenBarrierException e) {
// ignore
}
});
Thread thread2 = new Thread(() -> {
try {
System.out.println("thread2 step 1");
cyclicBarrier.await();
System.out.println("thread2 step 2");
cyclicBarrier.await();
System.out.println("thread2 step 3");
} catch (InterruptedException | BrokenBarrierException e) {
// ignore
}
});
thread1.start();
thread2.start();
}
}
实现原理
先来看看重要属性:
private static class Generation {
// 屏障是否被打破
boolean broken = false;
}
/** The lock for guarding barrier entry */
private final ReentrantLock lock = new ReentrantLock();
/** Condition to wait on until tripped */
private final Condition trip = lock.newCondition();
/** The number of parties */
private final int parties;
/* The command to run when tripped */
private final Runnable barrierCommand;
/** The current generation */
private Generation generation = new Generation();
/**
* Number of parties still waiting. Counts down from parties to 0 on each generation.
* It is reset to parties on each new generation or when broken.
*/
private int count;
可以看到,CyclicBarrier里用了独占锁ReentrantLock实现多线程间的计数器同步,parties表示当多少个线程到达屏障后,冲破屏障往下执行,而count表示当前还剩余多少个线程还未到达屏障,当所有线程都冲破屏障后,它又会在新一轮(new generation)被重置为parties的值。也就是说,count和Generation是用来实现重置效果的。
再看看构造方法的属性赋值:
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
再来看看关键方法:
await()
public int await() throws InterruptedException, BrokenBarrierException {
try {
// false表示不设置超时
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}
dowait()方法代码如下:
// timed:是否超时等待, nanos:超时时间
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Generation g = generation;
if (g.broken)
throw new BrokenBarrierException();
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
int index = --count;
// 如果index为0,表示所有线程都已到达了屏障,此时去执行初始化时设定的barrierCommand(如果有的话)
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
// 唤醒其他线程,并重置进行下一轮
nextGeneration();
// 返回
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// 否则需要等其他线程都达到屏障
// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
// 区分超时等待与不超时等待
if (!timed)
trip.await();
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to // "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
// g != generation 说明被唤醒后已重置了轮次,说明所有线程均已到达线程屏障,可以返回了。
if (g != generation)
return index;
// 等待超时,抛出超时异常
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
其中,nextGeneration()方法如下:
private void nextGeneration() {
// signal completion of last generation
// 唤醒等待在trip条件(即屏障)上的其他所有线程
trip.signalAll();
// set up next generation
// 重置count的值为初始值parties
count = parties;
// 重置当前轮次
generation = new Generation();
}
参考资料:
《Java并发编程之美》