【hdu1005】Number Sequence(矩阵快速幂)

Problem Description

A number sequence is defined as follows:

f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.

Given A, B, and n, you are to calculate the value of f(n).

Input

The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.

Output

For each test case, print the value of f(n) on a single line.
闲谈:这个题很早就做过了,第一次做用的规律。后来知道还能用矩阵快速幂解,就学了一下又做了一遍。讲一下矩阵快速幂的做法

题解:

题目给你了公式,区别于一般的矩阵快速幂,他给的系数是A,B。我们就来推导一下。

f(n)=A*f(n-1)+B*f(n-2)
f(n+1)=A*f(n)+B*f(n-1)=A^2*f(n-1)+A*Bf(n)*f(n-2)+B*f(n-1);

把基础的:
1 1
1 0
换成
a b
1 0
得到新公式:
这里写图片描述
让A=

所以f(n)=(A[0][0]+A[0][1])mod7;

不懂矩阵快速幂的来这里看看瞧瞧了^_^

代码:

#include
#include
#include
using namespace std;
const int MAX_N=1e8+100;
const int mod=7;
struct mat
{
    int M[2][2];
};
int a,b,n;
mat mat_mul(mat x,mat y)
{
    mat res;
    memset(res.M,0,sizeof(res.M));
    for(int i=0;i<2;i++)
        for(int j=0;j<2;j++)
        for(int k=0;k<2;k++)
    {
        res.M[i][j]+=x.M[i][k]*y.M[k][j];
        res.M[i][j]%=mod;
    }
    return res;
}
int mod_pow(int N)
{
    mat c,res;
    memset(res.M,0,sizeof(res.M));
    c.M[0][0]=a; c.M[0][1]=b;
    c.M[1][0]=1; c.M[1][1]=0;
    for(int i=0;i<2;i++)
        res.M[i][i]=1;
    while(N>0)
    {
        if(N&1) res=mat_mul(res,c);
        c=mat_mul(c,c);
        N>>=1;
    }
    return res.M[0][0]+res.M[0][1];
}
int main()
{
    while(scanf("%d%d%d",&a,&b,&n)&&a)
    {
        int d=mod_pow(n-2)%mod;
        printf("%d\n",d);
    }
    return 0;
}

你可能感兴趣的:(ACM_数论,ACM)