解 由复合函数微分法则可得 ∂ z ∂ x = ∂ z ∂ u ⋅ 1 + ∂ z ∂ v ⋅ ( − y x 2 ) , ∂ z ∂ y = 1 x ⋅ ∂ z ∂ v \cfrac{\partial z}{\partial x}=\cfrac{\partial z}{\partial u}\cdot1+\cfrac{\partial z}{\partial v}\cdot\left(-\cfrac{y}{x^2}\right),\cfrac{\partial z}{\partial y}=\cfrac{1}{x}\cdot\cfrac{\partial z}{\partial v} ∂x∂z=∂u∂z⋅1+∂v∂z⋅(−x2y),∂y∂z=x1⋅∂v∂z,于是 x ∂ z ∂ x + y ∂ z ∂ y = x ⋅ ∂ z ∂ u − y x ⋅ ∂ z ∂ v + y x ⋅ ∂ z ∂ v = x ∂ z ∂ u = z x\cfrac{\partial z}{\partial x}+y\cfrac{\partial z}{\partial y}=x\cdot\cfrac{\partial z}{\partial u}-\cfrac{y}{x}\cdot\cfrac{\partial z}{\partial v}+\cfrac{y}{x}\cdot\cfrac{\partial z}{\partial v}=x\cfrac{\partial z}{\partial u}=z x∂x∂z+y∂y∂z=x⋅∂u∂z−xy⋅∂v∂z+xy⋅∂v∂z=x∂u∂z=z。
又 u = x u=x u=x,故新方程为 u ∂ z ∂ u = z u\cfrac{\partial z}{\partial u}=z u∂u∂z=z。(这道题主要利用了复合函数求导法则求解)
解 由于 F ( x y , y z ) = 0 F(xy,yz)=0 F(xy,yz)=0,可得 G x ′ = F 1 ′ ⋅ y , G y ′ = F 1 ′ ⋅ x + F 2 ′ ⋅ y , G x ′ = F 2 ′ ⋅ y G'_x=F'_1\cdot y,G'_y=F'_1\cdot x+F'_2\cdot y,G'_x=F'_2\cdot y Gx′=F1′⋅y,Gy′=F1′⋅x+F2′⋅y,Gx′=F2′⋅y。又 ∂ z ∂ x = − G x ′ G z ′ = − F 1 ′ F 2 ′ , ∂ z ∂ y = − G y ′ G z ′ = − F 1 ′ ⋅ x + F 2 ′ ⋅ y F 2 ′ ⋅ y \cfrac{\partial z}{\partial x}=-\cfrac{G'_x}{G'_z}=-\cfrac{F'_1}{F'_2},\cfrac{\partial z}{\partial y}=-\cfrac{G'_y}{G'_z}=-\cfrac{F'_1\cdot x+F'_2\cdot y}{F'_2\cdot y} ∂x∂z=−Gz′Gx′=−F2′F1′,∂y∂z=−Gz′Gy′=−F2′⋅yF1′⋅x+F2′⋅y,因此 x ∂ z ∂ x − y ∂ z ∂ y = z x\cfrac{\partial z}{\partial x}-y\cfrac{\partial z}{\partial y}=z x∂x∂z−y∂y∂z=z。(这道题主要利用了隐函数求导求解)
解 方程两边求全微分,得 F x ′ d x + F y ′ d y + F t ′ d t = 0 F'_x\mathrm{d}x+F'_y\mathrm{d}y+F'_t\mathrm{d}t=0 Fx′dx+Fy′dy+Ft′dt=0,则 d t = − F x ′ F t ′ d x − F y ′ F t ′ d y \mathrm{d}t=-\cfrac{F'_x}{F'_t}\mathrm{d}x-\cfrac{F'_y}{F'_t}\mathrm{d}y dt=−Ft′Fx′dx−Ft′Fy′dy,又 d y = f x ′ d x + f t ′ d t = f x ′ d x − f t ′ ( F x ′ F t ′ d x + F y ′ F t ′ d y ) \mathrm{d}y=f'_x\mathrm{d}x+f'_t\mathrm{d}t=f'_x\mathrm{d}x-f'_t\left(\cfrac{F'_x}{F'_t}\mathrm{d}x+\cfrac{F'_y}{F'_t}\mathrm{d}y\right) dy=fx′dx+ft′dt=fx′dx−ft′(Ft′Fx′dx+Ft′Fy′dy),解得 d y d x = f x ′ F t ′ − f t ′ F x ′ f t ′ F y ′ + F t ′ \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{f'_xF'_t-f'_tF'_x}{f'_tF'_y+F'_t} dxdy=ft′Fy′+Ft′fx′Ft′−ft′Fx′,故选 ( D ) (D) (D)。(这道题主要利用了隐函数求导求解)
解 等式 u ( x , 2 x ) = x u(x,2x)=x u(x,2x)=x两边对 x x x求导得 u 1 ′ + 2 u 2 ′ = 1 u'_1+2u'_2=1 u1′+2u2′=1,两边再对 x x x求导得 u 11 ′ ′ + 2 u 12 ′ ′ + 2 u 21 ′ ′ + 4 u 22 ′ ′ = 0 u''_{11}+2u''_{12}+2u''_{21}+4u''_{22}=0 u11′′+2u12′′+2u21′′+4u22′′=0,等式 u 1 ′ ( x , 2 x ) = x 2 u'_1(x,2x)=x^2 u1′(x,2x)=x2两边对 x x x求导得 u 11 ′ ′ + 2 u 12 ′ ′ = 2 x u''_{11}+2u''_{12}=2x u11′′+2u12′′=2x,代入得 u 11 ′ ′ ( x , 2 x ) = − 4 3 x u''_{11}(x,2x)=-\cfrac{4}{3}x u11′′(x,2x)=−34x。(这道题主要利用了方程求导法则求解)
解 由 lim ( x , y ) → ( 0 , 0 ) f ( x , y ) − x y x 2 + y 2 = a \lim\limits_{(x,y)\to(0,0)}\cfrac{f(x,y)-xy}{x^2+y^2}=a (x,y)→(0,0)limx2+y2f(x,y)−xy=a,知 f ( x , y ) − x y x 2 + y 2 = a + α \cfrac{f(x,y)-xy}{x^2+y^2}=a+\alpha x2+y2f(x,y)−xy=a+α,其中 lim ( x , y ) → ( 0 , 0 ) α = 0 \lim\limits_{(x,y)\to(0,0)}\alpha=0 (x,y)→(0,0)limα=0。
再令 a = 1 2 + b , b > 0 a=\cfrac{1}{2}+b,b>0 a=21+b,b>0,于是上式可改写为 f ( x , y ) = x y + ( 1 2 + b + α ) ( x 2 + y 2 ) f(x,y)=xy+\left(\cfrac{1}{2}+b+\alpha\right)(x^2+y^2) f(x,y)=xy+(21+b+α)(x2+y2)。
由 f ( x , y ) f(x,y) f(x,y)的连续性,有 f ( 0 , 0 ) = lim ( x , y ) → ( 0 , 0 ) f ( x , y ) = 0 f(0,0)=\lim\limits_{(x,y)\to(0,0)}f(x,y)=0 f(0,0)=(x,y)→(0,0)limf(x,y)=0。
另一方面,由 lim ( x , y ) → ( 0 , 0 ) α = 0 \lim\limits_{(x,y)\to(0,0)}\alpha=0 (x,y)→(0,0)limα=0知,存在点 ( 0 , 0 ) (0,0) (0,0)处的去心邻域 U ˚ δ ( 0 ) \mathring{U}_\delta(0) U˚δ(0),当 ( x , y ) ∈ U ˚ δ ( 0 ) (x,y)\in\mathring{U}_\delta(0) (x,y)∈U˚δ(0)时,有 ∣ α ∣ < b 2 |\alpha|<\cfrac{b}{2} ∣α∣<2b,故在 U ˚ δ ( 0 ) \mathring{U}_\delta(0) U˚δ(0)内, f ( x , y ) > 0 f(x,y)>0 f(x,y)>0,所以 f ( 0 , 0 ) f(0,0) f(0,0)是 f ( x , y ) f(x,y) f(x,y)的极小值。(这道题主要利用了极限定义求解)
解 如下图,由于所求椭圆必须包含圆 x 2 + y 2 = 2 y x^2+y^2=2y x2+y2=2y,并与之相切。
故在椭圆上的任意一点 ( x , y ) (x,y) (x,y)处满足 f ( x , y ) = x 2 + ( y − 1 ) 2 ⩾ 1 f(x,y)=x^2+(y-1)^2\geqslant1 f(x,y)=x2+(y−1)2⩾1。这就是说函数 f ( x , y ) = x 2 + ( y − 1 ) 2 f(x,y)=x^2+(y-1)^2 f(x,y)=x2+(y−1)2在椭圆方程 x 2 a 2 + y 2 b 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1 a2x2+b2y2=1的约束下取得最小值 1 1 1。于是考虑条件极值问题:
{ min { f ( x , y ) } = 1 , x 2 a 2 + y 2 b 2 = 1. \begin{cases} \min\{f(x,y)\}=1,\\ \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1. \end{cases} ⎩⎨⎧min{ f(x,y)}=1,a2x2+b2y2=1.
构造拉格朗日函数 L ( x , y , λ ) = x 2 + ( y − 1 ) 2 + λ ( x 2 a 2 + y 2 b 2 − 1 ) L(x,y,\lambda)=x^2+(y-1)^2+\lambda\left(\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}-1\right) L(x,y,λ)=x2+(y−1)2+λ(a2x2+b2y2−1),令
{ L x ′ = 2 x + 2 λ x a 2 = 0 , ( 1 ) L y ′ = 2 ( y − 1 ) + 2 λ y b 2 = 0 , ( 2 ) L λ ′ = x 2 a 2 + y 2 b 2 − 1 = 0. ( 3 ) \begin{cases} L'_x=2x+\cfrac{2\lambda x}{a^2}=0,&\qquad(1)\\ L'_y=2(y-1)+\cfrac{2\lambda y}{b^2}=0,&\qquad(2)\\ L'_\lambda=\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}-1=0.&\qquad(3) \end{cases} ⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧Lx′=2x+a22λx=0,Ly′=2(y−1)+b22λy=0,Lλ′=a2x2+b2y2−1=0.(1)(2)(3)
若 x ≠ 0 x\ne0 x=0,则由可解得 λ = − a 2 \lambda=-a^2 λ=−a2,再由 ( 2 ) (2) (2)可解得 y 0 = b 2 b 2 − a 2 y_0=\cfrac{b^2}{b^2-a^2} y0=b2−a2b2;并由 ( 3 ) (3) (3)解得 x 0 2 = a 2 [ 1 − b 2 ( b 2 − a 2 ) 2 ] x_0^2=a^2\left[1-\cfrac{b^2}{(b^2-a^2)^2}\right] x02=a2[1−(b2−a2)2b2]。
由 f ( x 0 , y 0 ) = 1 f(x_0,y_0)=1 f(x0,y0)=1推出 a 2 [ 1 − b 2 ( b 2 − a 2 ) 2 ] + b 4 ( b 2 − a 2 ) 2 = 1 a^2\left[1-\cfrac{b^2}{(b^2-a^2)^2}\right]+\cfrac{b^4}{(b^2-a^2)^2}=1 a2[1−(b2−a2)2b2]+(b2−a2)2b4=1,从而 a 2 b 2 − a 4 − b 2 = 0 a^2b^2-a^4-b^2=0 a2b2−a4−b2=0( b 2 − a 2 = 0 b^2-a^2=0 b2−a2=0舍去)。
为了求出 a , b a,b a,b的值,使与之对应的椭圆面积 π a b \pi ab πab达到最小值,考察条件极值问题
{ min { a b } , a 2 b 2 − a 4 − b 2 = 0. \begin{cases} \min\{ab\},\\ a^2b^2-a^4-b^2=0. \end{cases} { min{ ab},a2b2−a4−b2=0.
构造拉格朗日函数 H ( a , b , η ) = a b + η ( a 2 b 2 − a 4 − b 2 ) H(a,b,\eta)=ab+\eta(a^2b^2-a^4-b^2) H(a,b,η)=ab+η(a2b2−a4−b2)。令
{ H a ′ = b + 2 a b 2 η − 4 a 3 η = 0 , ( 4 ) H b ′ = a + 2 a 2 b η − 2 b η = 0 , ( 5 ) H η ′ = a 2 b 2 − a 4 − b 2 , ( 6 ) \begin{cases} H'_a=b+2ab^2\eta-4a^3\eta=0,&\qquad(4)\\ H'_b=a+2a^2b\eta-2b\eta=0,&\qquad(5)\\ H'_\eta=a^2b^2-a^4-b^2,&\qquad(6)\\ \end{cases} ⎩⎪⎨⎪⎧Ha′=b+2ab2η−4a3η=0,Hb′=a+2a2bη−2bη=0,Hη′=a2b2−a4−b2,(4)(5)(6)
由 ( 4 ) , ( 5 ) (4),(5) (4),(5)得 b 4 a 3 − 2 a b 2 = a 2 b − 2 a 2 b \cfrac{b}{4a^3-2ab^2}=\cfrac{a}{2b-2a^2b} 4a3−2ab2b=2b−2a2ba,从而 b 2 = 2 a 4 b^2=2a^4 b2=2a4。将此式代入 a 2 b 2 − a 4 − b 2 = 0 a^2b^2-a^4-b^2=0 a2b2−a4−b2=0,得到 2 a 6 − 3 a 4 = 0 2a^6-3a^4=0 2a6−3a4=0,于是 a 2 = 3 2 , a = 6 2 , b = 3 2 2 a^2=\cfrac{3}{2},a=\cfrac{\sqrt{6}}{2},b=\cfrac{3\sqrt{2}}{2} a2=23,a=26,b=232,此时椭圆面积 A 1 = π a b = 3 3 π 2 A_1=\pi ab=\cfrac{3\sqrt{3}\pi}{2} A1=πab=233π。
若 x = 0 x=0 x=0,则由 x 2 a 2 + y 2 b 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1 a2x2+b2y2=1解得 y = b y=b y=b。将 x = 0 , y = b x=0,y=b x=0,y=b代入 x 2 + ( y − 1 ) 2 = 1 x^2+(y-1)^2=1 x2+(y−1)2=1,于是 b = 2 b=2 b=2。
椭圆 x 2 a 2 + y 2 4 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{4}=1 a2x2+4y2=1在 ( 0 , 2 ) (0,2) (0,2)有水平切线,并且曲率和圆 x 2 + ( y − 1 ) 2 = 1 x^2+(y-1)^2=1 x2+(y−1)2=1的曲率相同,所以 y ′ ( 0 ) = 0 , y ′ ′ ( 0 ) = − 1 y'(0)=0,y''(0)=-1 y′(0)=0,y′′(0)=−1。
但是,由方程 x 2 a 2 + y 2 4 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{4}=1 a2x2+4y2=1可以计算在该点的 y ′ ( 0 ) = 0 , y ′ ′ ( 0 ) = − 2 a 2 y'(0)=0,y''(0)=-\cfrac{2}{a^2} y′(0)=0,y′′(0)=−a22,所以 2 a 2 = 1 \cfrac{2}{a^2}=1 a22=1,即 a = 2 a=\sqrt{2} a=2。此时,椭圆的面积 A 2 = 2 2 > 3 3 π 2 = A 1 A_2=2\sqrt{2}>\cfrac{3\sqrt{3}\pi}{2}=A_1 A2=22>233π=A1。
综上所述,当 a = 6 2 , b = 3 2 2 a=\cfrac{\sqrt{6}}{2},b=\cfrac{3\sqrt{2}}{2} a=26,b=232时,椭圆面积最小。(这道题主要利用了拉格朗日函数求解)
解 因 d [ f ( x , y ) ] = ∂ f ∂ x d x + ∂ f ∂ y d y \mathrm{d}[f(x,y)]=\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y d[f(x,y)]=∂x∂fdx+∂y∂fdy,因此曲线积分 ∫ L ∂ f ∂ x d x + ∂ f ∂ y d y \displaystyle\int_L\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y ∫L∂x∂fdx+∂y∂fdy与路径无关。
设 O ( 0 , 0 ) , A ( 4 , 4 ) , B ( 5 , 4 ) O(0,0),A(4,4),B(5,4) O(0,0),A(4,4),B(5,4),由条件 ∣ ∂ f ∂ x ∣ ⩽ 2 ∣ x − y ∣ , ∣ ∂ f ∂ y ∣ ⩽ 2 ∣ x − y ∣ \left|\cfrac{\partial f}{\partial x}\right|\leqslant2|x-y|,\left|\cfrac{\partial f}{\partial y}\right|\leqslant2|x-y| ∣∣∣∣∣∂x∂f∣∣∣∣∣⩽2∣x−y∣,∣∣∣∣∣∂y∂f∣∣∣∣∣⩽2∣x−y∣,知在直线 O A : y = x OA:y=x OA:y=x上, ∂ f ∂ x = ∂ f ∂ y = 0 \cfrac{\partial f}{\partial x}=\cfrac{\partial f}{\partial y}=0 ∂x∂f=∂y∂f=0,所以
f ( 5 , 4 ) − f ( 0 , 0 ) = ∫ ( 0 , 0 ) ( 5 , 4 ) d [ f ( x , y ) ] = ∫ ( 0 , 0 ) ( 5 , 4 ) ∂ f ∂ x d x + ∂ f ∂ y d y = ∫ O A ‾ ∂ f ∂ x d x + ∂ f ∂ y d y + ∫ A B ‾ ∂ f ∂ x d x + ∂ f ∂ y d y = ∫ 4 5 ∂ f ( x , 4 ) ∂ x d x . \begin{aligned} f(5,4)-f(0,0)&=\displaystyle\int^{(5,4)}_{(0,0)}\mathrm{d}[f(x,y)]=\displaystyle\int^{(5,4)}_{(0,0)}\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y\\ &=\displaystyle\int_{\overline{OA}}\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y+\displaystyle\int_{\overline{AB}}\cfrac{\partial f}{\partial x}\mathrm{d}x+\cfrac{\partial f}{\partial y}\mathrm{d}y=\displaystyle\int^5_4\cfrac{\partial f(x,4)}{\partial x}\mathrm{d}x. \end{aligned} f(5,4)−f(0,0)=∫(0,0)(5,4)d[f(x,y)]=∫(0,0)(5,4)∂x∂fdx+∂y∂fdy=∫OA∂x∂fdx+∂y∂fdy+∫AB∂x∂fdx+∂y∂fdy=∫45∂x∂f(x,4)dx.
又因 f ( 0 , 0 ) = 0 f(0,0)=0 f(0,0)=0,故 ∣ f ( 5 , 4 ) ∣ = ∣ ∫ 4 5 ∂ f ( x , 4 ) ∂ x d x ∣ ⩽ ∫ 4 5 2 ∣ x − 4 ∣ d x = 1 |f(5,4)|=\left|\displaystyle\int^5_4\cfrac{\partial f(x,4)}{\partial x}\mathrm{d}x\right|\leqslant\displaystyle\int^5_42|x-4|\mathrm{d}x=1 ∣f(5,4)∣=∣∣∣∣∣∫45∂x∂f(x,4)dx∣∣∣∣∣⩽∫452∣x−4∣dx=1。(这道题主要利用了第二型曲线积分求解)
解 必要性:设 u ( x , y ) = f ( x ) g ( y ) u(x,y)=f(x)g(y) u(x,y)=f(x)g(y),则 ∂ u ∂ x = f ′ ( x ) g ( y ) , ∂ u ∂ y = f ( x ) g ′ ( y ) , ∂ 2 u ∂ x ∂ y = f ′ ( x ) g ′ ( y ) \cfrac{\partial u}{\partial x}=f'(x)g(y),\cfrac{\partial u}{\partial y}=f(x)g'(y),\cfrac{\partial^2u}{\partial x\partial y}=f'(x)g'(y) ∂x∂u=f′(x)g(y),∂y∂u=f(x)g′(y),∂x∂y∂2u=f′(x)g′(y),因此 u ∂ 2 u ∂ x ∂ y = f ( x ) g ( y ) f ′ ( x ) g ′ ( y ) = ∂ u ∂ x ∂ u ∂ y u\cfrac{\partial^2u}{\partial x\partial y}=f(x)g(y)f'(x)g'(y)=\cfrac{\partial u}{\partial x}\cfrac{\partial u}{\partial y} u∂x∂y∂2u=f(x)g(y)f′(x)g′(y)=∂x∂u∂y∂u。
充分性:因为 ∂ 2 u ∂ x ∂ y = ∂ ∂ y ( ∂ u ∂ x ) \cfrac{\partial^2u}{\partial x\partial y}=\cfrac{\partial}{\partial y}\left(\cfrac{\partial u}{\partial x}\right) ∂x∂y∂2u=∂y∂(∂x∂u),所以有 u ( u x ′ ) y ′ − ( u x ′ ) ( u y ′ ) = 0 u(u'_x)'_y-(u'_x)(u'_y)=0 u(ux′)y′−(ux′)(uy′)=0,又 u ( x , y ) u(x,y) u(x,y)无零值,故可得 ( u x ′ u ) y ′ = 0 \left(\cfrac{u'_x}{u}\right)'_y=0 (uux′)y′=0,两边关于 y y y积分得 u x ′ u = c 1 ( x ) \cfrac{u'_x}{u}=c_1(x) uux′=c1(x),其中 c 1 ( x ) c_1(x) c1(x)是 x x x的任意可微函数,即有 ( ln ∣ u ∣ ) x ′ = c 1 ( x ) (\ln|u|)'_x=c_1(x) (ln∣u∣)x′=c1(x),再对 x x x积分得 ln ∣ u ∣ = ∫ c 1 ( x ) d x + c 2 ( y ) \ln|u|=\displaystyle\int c_1(x)\mathrm{d}x+c_2(y) ln∣u∣=∫c1(x)dx+c2(y),其中 c 2 ( y ) c_2(y) c2(y)是 y y y的任意可微函数。故 u ( x , y ) = ± e ∫ c 1 ( x ) d x e c 2 ( y ) = f ( x ) g ( y ) u(x,y)=\pm e^{\int c_1(x)\mathrm{d}x}e^{c_2(y)}=f(x)g(y) u(x,y)=±e∫c1(x)dxec2(y)=f(x)g(y)。(这道题主要利用了方程求导求解)
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。