Network Representation/ graph embedding 综述

几个综述:

  • Graph Embedding Techniques, Applications, and Performance: A Survey
  • Representation Learning on Graphs: Methods and Applications
  • A Comprehensive Survey of Graph Embedding:Problems,Techniques and Applications

网络表达的任务

  1. reconstruction
  • Network Reconstruction:
    学习network表达–>预测existing link(nearest neighbor)
  1. inference
  • node classification
    学习network表达–>训练分类器–>分类数据
  • link prediction
    学习network表达–>预测feature link(nearest neighbor)
  1. insight
  • visualization
    学习network表达–>layout

浅层Network embedding

node&link

–>

node neighborhood:
DeepWork(random work+ skip gram)
Node2Vec(BFS&DFS ---- next node with probability p&q https://www.jianshu.com/p/c631500d57dd)

–>

pair-wise proximity:
LINE:
first order proximity 最小化 两个顶点的向量表示的相似度(联合概率分布) 和 两个顶点的边的权重(经验) 的 KL散度;
second order proximity 最小化 两个顶点的相似度在当前节点与所有邻居相似度的比重(联合概率分布)和两个顶点的权重在当前点相连的边的占比
https://www.jianshu.com/p/90784081bc70

–>

community structure
M-NMF(Community Preserving Network Embedding):
microscopic structure和 community structure的结合
https://zhuanlan.zhihu.com/p/33405615?from_voters_page=true


Structural Deep Network Embedding(SDNE)
图拉普拉斯的理解
https://www.cnblogs.com/xbinworld/archive/2012/11/29/2795287.html
SDNE方法其实就是Auto-encoder为网络,误差为Auto-encoder输入和输出与first-order
https://blog.csdn.net/wangyang163wy/article/details/79698563


Property-preserving network embedding

  • Non-Transitivity:
    Non-transitive Hashing with Latent Similarity Components
    论文的方法详见我之前的博客。

  • Asymmetric Transitivity
    Asymmetric Transitivity Preserving Graph Embedding


Network embedding with side information

  • Node Content
    Network Representation Learning with Rich Text Information
    http://www.rootlu.com/blog/2017/08/07/TextDeepWalk.html/ (这个小哥自己做了一个网站,在上面写一些博客)
    https://blog.csdn.net/zhangbaoanhadoop/article/details/82313123

  • Node Label
    Max-Margin DeepWalk: Discriminative Learning of Network Representation

  • Node Content + Label
    Tri-Party Deep Network Representation
    https://blog.csdn.net/NockinOnHeavensDoor/article/details/80687330


Heterogeneous Information Network 异构信息网络做网络嵌入

  • meta-path
    最早提出meta-path的是sunyizhou:
    Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks.
  • Heterogeneous Information Network Embedding for Meta Path based Proximity.
  • Heterogeneous Network Embedding via Deep Architectures
  • Comparing Apples to Oranges: A Scalable Solution with Heterogeneous Hashing

Application-oriented network embedding

  • Cascade prediction
  • anchor link prediction

Future Directions

  • Dynamic Networks
    动态网络如何做embedding,动态网络的结构会变,比如增加/删除点/边。
    TIMERS: Error-Bounded SVD Restart on Dynamic Networks
    Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks

  • Hyper-Networks
    Structural Deep Embedding for Hyper-Networks

  • More Complex Structure

  • Preserve Special Property

  • Role of Side information

  • Embedding Space

  • End-to-End solution

  • Scalability

你可能感兴趣的:(图计算,图计算,graph,embedding)