- 使用 DingoDB 创建自查询检索器的实战演示
fgayif
python
DingoDB深入解析与实战演示DingoDB是一种分布式多模向量数据库,它结合了数据湖和向量数据库的特点,能够存储任何类型和大小的数据(如Key-Value、PDF、音频、视频等)。它具有实时低延迟处理能力,可以快速获取洞察并响应,还能高效进行即时分析和处理多模数据。在本教程中,我们将演示如何使用DingoDB向量存储来创建一个自查询检索器。技术背景介绍DingoDB的设计结合了数据湖的灵活性和
- 使用 DashVector 进行高效的矢量检索和自查询检索器演示
bavDHAUO
python
在当代AI应用中,向量数据的管理和检索是至关重要的部分。DashVector是一个完全托管的向量数据库服务,提供了对高维稠密和稀疏向量的支持,允许实时插入和过滤搜索。这个服务基于DAMOAcademy自研的高效向量引擎Proxima核心构建,具备云原生和横向扩展能力,能够快速适应不同应用需求。在本篇文章中,我们将演示如何使用DashVector和SelfQueryRetriever来高效地进行矢量
- Python 模拟鼠标轨迹算法
a485240
鼠标轨迹计算机外设
一.鼠标轨迹模拟简介传统的鼠标轨迹模拟依赖于简单的数学模型,如直线或曲线路径。然而,这种方法难以捕捉到人类操作的复杂性和多样性。AI大模型的出现,使得能够通过深度学习技术,学习并模拟更自然的鼠标移动行为。二.鼠标轨迹算法实现AI大模型通过学习大量的人类鼠标操作数据,能够识别和模拟出自然且具有个体差异的鼠标轨迹。以下是实现这一技术的关键步骤:数据收集:收集不同玩家在各种游戏环境中的鼠标操作数据,包括
- Apache Storm:实时数据处理的闪电战
Aaron_945
Javaapachestorm大数据
文章目录ApacheStorm原理拓扑结构数据流处理容错机制官网链接基础使用安装与配置编写拓扑提交与运行高级使用状态管理窗口操作多语言支持优点高吞吐量低延迟可扩展性容错性总结ApacheStorm是一个开源的分布式实时计算系统,它允许你以极高的吞吐量处理无界数据流。Storm被广泛用于实时分析、在线机器学习、连续计算等多种场景。本文将深入探讨ApacheStorm的原理、基础使用、高级特性及其优点
- 斩获 44K 星!让 DeepSeek 控制你的浏览器,绝了
开源项目精选
人工智能
Browser-Use的开源框架,是一个能让电脑自动操作网页的智能工具。能处理动态加载的内容(比如广告弹窗、实时更新的图表),遇到网页元素位置变化还会自己调整策略,减少人工干预。Stars数46046Forks数4735主要特点强大的浏览器自动化功能:BrowserUse将先进的AI能力与强大的浏览器自动化技术相结合,为AI智能体实现流畅无缝的网页交互体验。视觉感知与HTML结构提取:将视觉理解能
- 6-NBDG 葡萄糖摄取荧光探针,使用方法和注意事项
强化生物实验室
leetcode决策树最小二乘法散列表逻辑回归启发式算法支持向量机
一、试剂描述6-NBDG,一种非水解形式的脱氧葡萄糖类似物的荧光素,可用来监测分离活细胞和完整组织对葡萄糖的摄取和转运,判断细胞活力的指标之一。可用实时共聚焦、高分辨率或宽视野荧光显微镜,以及流式细胞仪来检测。尽管6-NBDG荧光对环境比较敏感,但约在465/540nm下表现出激发和发射波长,使用荧光素(如FITC)的光学滤片来进行结果观察即可。二、试剂信息英文名称:6-(N-(7-Nitrobe
- MySQL5.7主从复制教程
小坏蛋至尊宝
oracle数据库
MySQL5.7主从复制教程简述:主从复制,是用来建立一个和主数据库完全一样的数据库环境,称为从数据库,主数据库一般是准实时的业务数据库、事务处理库,从库做查询库。复制过程简单的说就是master将数据库的改变写入二进制日志,slave同步这些二进制日志,并根据这些二进制日志行数据操作1、什么是主从复制主从复制,是用来建立一个和主数据库完全一样的数据库环境,称为从数据库,主数据库一般是准实时的业务
- WebRTC、WebSocket、EasyRTC嵌入式音视频SDK:技术差异与应用场景详细对比
EasyCVR
RTCwebrtcwebsocket音视频javascript网络开发语言
WebRTC和WebSocket是两种常用于实时通信的技术,尽管它们都支持实时数据传输,但在设计目标、技术实现和应用场景上存在显著差异。一、概述1)WebRTCWebRTC是一个开源项目,旨在通过简单的API实现浏览器之间的实时音视频通信和数据传输。它支持点对点(P2P)通信,主要应用于音视频通话、屏幕共享、文件传输等场景。2)WebSocketWebSocket是一种基于TCP的通信协议,提供了
- HarmonyNext实战:基于ArkTS的高性能数据流处理系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能数据流处理系统开发引言在HarmonyNext生态系统中,数据流处理是一个关键的技术领域。本文将深入探讨如何使用ArkTS构建一个高性能的数据流处理系统,重点讲解流式数据处理、并发模型、内存管理以及性能优化等高级主题。我们将通过一个实际的案例——实时日志分析系统,来展示如何将这些技术应用到实际工程中。系统架构设计我们的实时日志分析系统需要处理来自多
- 什么是机器视觉3D引导大模型
视觉人机器视觉
机器视觉3D3d数码相机机器人人工智能大数据
机器视觉3D引导大模型是结合深度学习、多模态数据融合与三维感知技术的智能化解决方案,旨在提升工业自动化、医疗、物流等领域的操作精度与效率。以下从技术架构、行业应用、挑战与未来趋势等方面综合分析:一、技术架构与核心原理多模态数据融合与深度学习3D视觉引导大模型通常整合RGB图像、点云数据、深度信息等多模态输入,通过深度学习算法(如卷积神经网络、Transformer)进行特征提取与融合。例如,油田机
- Java 大视界 -- 基于 Java 的大数据实时流处理中的窗口操作与时间语义详解(135)
青云交
大数据新视界Java大视界java大数据大数据实时流处理窗口操作时间语义滚动窗口滑动窗口
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 深度学习在医学影像分析中的应用:DeepSeek系统的实践与探索
Evaporator Core
#深度学习#DeepSeek快速入门DeepSeek进阶开发与应用深度学习人工智能
随着人工智能技术的迅猛发展,深度学习在医学领域的应用逐渐成为研究热点。医学影像分析作为医疗诊断的重要组成部分,正受益于深度学习技术的突破。DeepSeek系统是一种基于深度学习的医学影像分析平台,旨在通过高效、精准的算法辅助医生进行疾病诊断和治疗决策。本文将深入探讨DeepSeek系统的技术原理、实现方法及其在医学影像分析中的实际应用,并结合代码示例展示其核心功能。1.DeepSeek系统的技术架
- 【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割
985小水博一枚呀
论文解读深度学习transformer人工智能网络cnn
【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割文章目录【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割2.Re
- Objective-C语言的网络编程
俞嫦曦
包罗万象golang开发语言后端
Objective-C语言中的网络编程引言Objective-C是一种面向对象的编程语言,广泛应用于iOS和macOS应用程序的开发。随着移动互联网的快速发展,网络编程成为了现代应用程序开发中不可或缺的一部分。无论是从服务器获取数据、上传文件,还是实现实时通信,网络编程都扮演着至关重要的角色。本文将深入探讨Objective-C语言中的网络编程,涵盖从基础的网络请求到高级的异步处理、安全通信等内容
- 画面+音频实时去重,青否数字人最新技术已上线!
2501_91000143
数字人直播音视频人工智能
先预告下,青否数字人3月下旬将迎来一次超级重磅的版本发布。这将彻底颠覆你对直播数字人的认知!在手持样品讲解时,数字人主播能够精准输出产品话术。告别传统数字人一直不停歇的讲解,可自主暂停讲解、喝水、进出镜头、更换服饰,直播节奏比真人更自然。作为AI直播私有化部署行业引领者,青否数字人一直保持每周迭代的更新速度,持续引领行业前沿。接下来,为您深度揭秘3月中上旬推出的重磅新功能:AI话术5.0:AI泛化
- Qt动态设置样式,实现样式实时切换
水瓶丫头站住
样式表Qtqt开发语言样式设置
文章目录概要插件实现界面核心代码设置样式扩展导入样式导出样式概要最近需要设计界面,但是使用Qt的Designer只能看到每个界面单独的样式,程序中有些事需要主界面调用进行组合的界面,因此需要写一个插件Ui可以直接输入样式内容,进行实时设置,查看样式效果。插件实现界面应用样式前应用样式后核心代码设置样式voidSetSheetStyle::on_pbtn_Apply_clicked(){qApp->
- PyTorch 深度学习博客
Zoro|
PyTorchDeepLearning人工智能
PyTorch深度学习博客欢迎来到我的PyTorch深度学习博客!在这里,我将分享使用PyTorch学习和实践深度学习项目的点滴经验。本博客适用于初学者和有一定基础的开发者,旨在帮助大家快速搭建环境、掌握核心概念,并通过实例了解实际应用。环境配置为了确保项目的稳定性和兼容性,我选择了Python3.9环境,并在conda创建的虚拟环境中运行最新且稳定的PyTorch版本2.6.0。1.创建Pyth
- 印度、马来西亚股市实时行情API数据接口推荐
后端
随着金融科技的发展,实时行情数据接口成为金融交易、量化投资和市场分析的重要工具。以下为您推荐几款适合获取印度、马来西亚股市实时行情的API数据接口,涵盖不同需求场景和技术特点。一、首选推荐:PRDS金融财务API接口PRDS金融财务API接口是目前市场上针对印度股市实时行情的高性能解决方案,适合对数据时效性和稳定性要求较高的用户。数据覆盖:提供印度全市场股票及指数的实时行情数据,包括NSE(印度国
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
深度学习
卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。适用场景:广泛应用于图像处理相关的
- Trae智能协作AI编程工具IDE:如何在MacBook Pro下载、安装和配置使用Trae?
Trae智能协作AI编程工具IDE:如何在MacBookPro下载、安装和配置使用Trae?一、为什么选择Trae智能协作IDE?在AI编程新时代,Trae通过以下突破性功能重新定义开发体验:双向智能增强:AI不仅提供代码补全,更能理解上下文主动建议架构优化方案自然语言编程:支持"用Python写一个带JWT验证的FastAPI用户系统"式开发实时协作画布:可视化呈现AI生成的代码逻辑,支持多模态
- 算力技术创新驱动多场景应用演进
智能计算研究中心
其他
内容概要算力技术创新正成为数字经济时代的基础性驱动力,从异构计算架构的多元融合到量子计算的颠覆性突破,技术演进不断突破物理与算法的双重边界。在工业互联网场景中,边缘计算通过分布式节点实现毫秒级响应,支撑智能制造产线的实时控制;智能安防系统依托深度学习模型与流计算技术,完成海量视频数据的动态解析;而科学计算领域通过分布式计算与模型压缩技术,将基因测序、气候模拟等复杂任务的效率提升至新量级。值得注意的
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 算力未来演进与多场景创新
智能计算研究中心
其他
内容概要算力作为数字经济的核心生产力,其技术架构与应用场景正经历多维突破。从技术架构层面来看,异构计算通过整合CPU、GPU、FPGA等多元芯片实现性能跃升,边缘计算则借助分布式节点降低时延并提升响应效率,而量子计算在特定领域的指数级加速潜力已进入验证阶段。在应用场景维度,工业互联网通过实时数据分析优化产线效率,智能安防依托视频流结构化处理增强预警能力,元宇宙则依赖高密度渲染与低延迟传输构建沉浸式
- 融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
在深度学习的背景下,NVIDIA的CUDA与AMD的ROCm框架缺乏有效的互操作性,导致基础设施资源利用率显著降低。随着模型规模不断扩大而预算约束日益严格,2-3年更换一次GPU的传统方式已不具可持续性。但是Pytorch的最近几次的更新可以有效利用异构计算集群,实现对所有可用GPU资源的充分调度,不受制于供应商限制。本文将深入探讨如何混合AMD/NVIDIAGPU集群以支持PyTorch分布式训
- 深度学习框架PyTorch——从入门到精通(4)数据转换
Fansv587
Torch框架学习深度学习pytorch人工智能python经验分享
转换(Transforms)很多时候,数据并不总是以训练机器学习算法所需的最终处理形式出现。所以我们需要使用变换对数据进行一些处理,使其适合训练。所有TorchVision数据集都有两个参数——transform来修改特征,target_transform来修改标签——接受包含转换逻辑的可调用项。torchvision.transform模块提供了几个开箱即用的转换。FashionMNIST数据集
- Linux 查看 CPU 使用情况
linux运维
在Linux系统中,查看CPU使用情况是性能分析和故障排查的重要环节。查看CPU使用情况,使用top命令或者htop命令来查看。top命令是Linux的一个快速动态进程监视器,可以实时显示特定系统监视器核心指标,示例如下:1.top命令toptop-19:30:10up 2:33, 1user, loadaverage:0.44,0.47,0.45Tasks:183total, 1runn
- 深度学习框架PyTorch——从入门到精通(5)构建神经网络
Fansv587
Torch框架学习深度学习pytorch神经网络经验分享
构建神经网络获取训练设备定义类模型层nn.Flattennn.Linearnn.ReLUnn.Sequentialnn.Softmax模型参数补充说明argmax神经网络是由一些层或者模块组成的,这些层和模块会对数据进行各种操作。在PyTorch里,torch.nn这个命名空间提供了你搭建自己神经网络所需要的所有基础组件。PyTorch里的每一个模块都是nn.Module类的子类。一个神经网络本身
- kafka详细介绍以及使用
酷爱码
经验分享kafka分布式
ApacheKafka是一个由Apache软件基金会开发的开源流式数据平台和消息系统。它被设计用于处理实时数据流,并能够支持高容错性、可伸缩性和可靠性。Kafka最初是由LinkedIn开发,并于2011年捐赠给Apache软件基金会。它现在被许多公司广泛应用于构建实时数据流架构和事件驱动型应用程序。Kafka提供了一种高性能、持久性的消息传递系统,通过将消息发布到主题(topic)和订阅这些主题
- WebRTC 介绍
KillFuckBugs
webrtc
WebRTC简介WebRTC(WebRealTimeCommunication,网页实时通信)是一个开源项目和技术标准,旨在为浏览器和应用程序提供实时通信功能,无需额外的插件或第三方软件。它最初由Google在2011年发起,现由W3C(万维网联盟)和IETF(互联网工程任务组)共同维护和标准化。WebRTC的核心目标是实现低延迟、高质量的音视频通信以及点对点数据传输,广泛应用于视频会议、实时聊天
- ECharts仪表盘-仪表盘13,附视频讲解与代码下载
图表制作解说(目标1000个图表)
echarts仪表盘echarts仪表盘统计分析数据可视化大屏可视化
引言:ECharts仪表盘(GaugeChart)是一种类似于速度表的数据可视化图表类型,用于展示单个或多个变量的指标和状态,特别适用于展示指标的实时变化和状态。本文将详细介绍如何使用ECharts库实现一个仪表盘,包括图表效果预览、视频讲解及代码下载,让你轻松掌握这一技能。一、图表效果预览二、视频讲解链接为了更直观地了解图表的实现过程,我录制了一段详细的视频讲解,并上传到了B站。视频中将逐步介绍
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =