- 微软 LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练
人工智能
LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练LayoutLMv3应用统一的文本-图像多模态Transformer来学习跨模态表示。Transformer具有多层架构,每层主要由多头自注意力机制和逐位置全连接前馈网络组成。Transformer的输入是文本嵌入$Y=y_{1:L}$和图像嵌入$X=x_{1:M}$序列的连接,其中$L$和$M$分别是文本和图像的序列长度。通过Tr
- AI时代前端开发的创造力:解放还是束缚?
前端
在人工智能(AI)快速发展的时代,AI技术的影响已经渗透到各个领域,从医疗保健到金融服务,再到创意产业。AI工具的出现,为前端开发带来了前所未有的效率提升,但也引发了人们对创造力的担忧:这些强大的AI写代码工具会解放前端工程师的创造力,还是会最终扼杀它?本文将以ScriptEcho为例,探讨AI辅助前端开发工具对前端工程师创造力的双面影响。AI辅助前端开发对创造力的潜在负面影响不可否认,AI辅助前
- AI前端开发学习资源与途径:开启你的智能化前端之旅
前端
随着人工智能技术的飞速发展,AI写代码工具已经不再是遥不可及的梦想,它正深刻地改变着前端开发的模式。AI赋能前端开发,不仅提高了开发效率,也降低了学习门槛,为更多开发者打开了通往智能化前端世界的大门。然而,学习AI前端开发也面临着诸多挑战,需要系统学习和持续实践。本文将为你详细介绍AI前端开发的学习途径、资源以及实践经验,助你开启这段精彩的旅程。AI前端开发的兴起及重要性近年来,人工智能技术在各个
- AI前端开发:与新技术融合,重塑职业发展之路
前端
近年来,人工智能(AI)技术飞速发展,深刻地改变着各个行业,前端开发领域也不例外。AI写代码工具的兴起,为前端开发者带来了前所未有的机遇和挑战。本文将探讨AI前端开发与其他技术的融合,分析其对职业发展的影响,并以ScriptEcho为例,解读AI如何赋能前端开发。AI前端开发与其他技术的融合:机遇与挑战并存AI前端开发并非孤立存在,它与低代码/无代码平台、区块链技术、Web3.0、元宇宙等新兴技术
- AI时代的前端开发:拥抱变化,迎接挑战
前端
近年来,人工智能(AI)技术的飞速发展深刻地改变着各个行业,前端开发领域也不例外。面对AI带来的冲击和挑战,开发者们需要积极拥抱变化,学习新技能,才能在竞争激烈的市场中立于不败之地。本文将探讨AI时代前端开发面临的新挑战,以及如何利用AI赋能前端开发,提高效率,应对技术更新迭代。关键词:AI写代码工具AI时代前端开发的新挑战AI技术的快速发展,为前端开发带来了前所未有的机遇,同时也带来了新的挑战。
- DeepSeek 实现原理探析
rockmelodies
人工智能aideepseek深度学习
DeepSeek实现原理探析引言DeepSeek是一种基于深度学习的智能搜索技术,它通过结合自然语言处理(NLP)、信息检索(IR)和机器学习(ML)等多领域的技术,旨在提供更加精准、智能的搜索结果。本文将深入探讨DeepSeek的实现原理,分析其核心技术及其在实际应用中的表现。一、DeepSeek的核心技术自然语言处理(NLP)词嵌入(WordEmbedding):DeepSeek使用如Word
- 神经网络常见激活函数 9-CELU函数
亲持红叶
神经网络常见激活函数深度学习机器学习人工智能数学建模神经网络python
文章目录CELU函数+导函数函数和导函数图像优缺点pytorch中的CELU函数tensorflow中的CELU函数CELU连续可微指数线性单元:CELU(ContinuouslyDifferentiableExponentialLinearUnit),是一种连续可导的激活函数,结合了ELU和ReLU的特点,旨在解决ELU在某些情况下的梯度问题。函数+导函数CELU函数CELU(x)={xx≥0α
- 深度学习视频教程推荐
yunTrans
DeepLearning深度学习视频神经网络
推荐一个深度学习视频教程,中文,推导详细。老先生娓娓道来,将神经网络、深度学习讲的非常透彻。由复旦大学吴立德老师教授的课程:http://www.youku.com/playlist_show/id_21508721.html
- 基于深度学习的商品推荐
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的商品推荐系统利用深度学习技术对用户的行为和商品的特征进行分析和建模,从而向用户推荐最相关的商品。这类系统在电子商务、社交媒体和内容推荐等领域中具有广泛应用。以下是对这一领域的系统介绍:1.任务和目标商品推荐系统的主要任务和目标包括:个性化推荐:根据用户的兴趣和行为,向用户推荐个性化的商品列表。提高用户体验:通过精准推荐,提高用户的购物体验和满意度。增加销售额:通过推荐相关商品,增加用
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- 23、深度学习-自学之路-激活函数relu、tanh、sigmoid、softmax函数的正向传播和反向梯度。
小宇爱
深度学习-自学之路深度学习人工智能
在使用这个非线性激活函数的时候,其实我们重点还是学习的是他们的正向怎么传播,以及反向怎么传递的。如下图所示:第一:relu函数的正向传播函数是:当输入值(隐藏层)值大于了,就输出自己本身的值。反向梯度传播:当输出值大于0,那么反向梯度值就等于输出值乘以1如果小于0,那反向梯度值就等于0.通俗的来说就是,如果输入值是0或小于0,那么输出值的反向增强就没有。如果输入值大于0,那么输出值的方向增强就有。
- 自动驾驶技术的未来趋势与挑战分析
智能计算研究中心
其他
内容概要自动驾驶技术自诞生以来经历了多个发展阶段。最初的研究集中在感知和控制系统的基础构建,随后进入了数据处理和算法的优化阶段,如今,随着人工智能和机器学习技术的快速应用,自动驾驶行业正处于一个前所未有的迅猛发展期。当前,行业内涌现出多种解决方案,各大汽车制造商与科技公司纷纷加大投入,推动这一领域的技术进步。市场需求不断增加,为自动驾驶技术注入活力。城市交通拥堵、环境污染等问题促使人们寻求更加智能
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 基于深度学习的半导体算法原理及应用
埃菲尔铁塔_CV算法
算法机器学习人工智能计算机视觉深度学习python
摘要随着半导体产业的持续发展,深度学习技术在该领域的应用日益广泛且深入。本文全面阐述了基于深度学习的半导体算法原理,涵盖卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等在半导体制造过程监测、缺陷检测、性能预测等方面的应用。详细分析了这些算法处理半导体相关数据的机制,探讨了算法实现中的关键技术,如数据预处理、模型训练与优化等。通过实际案例展示
- 计算机视觉国内外研究现状(综述)
埃菲尔铁塔_CV算法
计算机视觉
1.国内外研究进展1.2.1特征提取研究进展特征提取是图像处理的一个重要环节,是进行身份识别和行为识别的重要部分。近年来,针对不同特征的提取,国内外学者提出了许多特征提取算法,同样特征提取的效果大都不错。但是在复杂的猪舍环境中提取猪的特征还是比较困难的。下面针对几种目前常用的特征提取算法进行一些介绍。(1)传统的特征提取算法传统特征提取算法已经发展了很久,现阶段比较成熟,是深度学习算法出来之前研究
- DeepSeek预言未来5年升值最快的东西
ZhuBin365
其它人工智能机器人
Thinking好的,我现在需要思考未来5年哪些东西可能会升值最快。首先,我得考虑当前的经济趋势和技术发展的方向。通货膨胀可能继续,所以实物资产可能保值。然后是科技领域,比如人工智能、量子计算这些前沿技术相关的资产可能会有增长。接着,环保和可持续发展是热门话题,可再生能源相关的产业可能会增值。例如,太阳能、风能的公司股票或者相关技术专利。另外,电动汽车和电池技术也可能持续发展,锂、钴等稀有金属的需
- LLM大模型产品经理学习指南【2025全新版】:极致详细,一篇搞定!
大模型入门学习
产品经理语言模型人工智能DeepSeek大模型学习LLM
前言·随着人工智能技术的蓬勃发展,尤其是大模型(LargeModel)的强势兴起,越来越多的企业对这一领域愈发重视并加大投入。作为大模型产品经理,需具备一系列跨学科的知识与技能,方能有效地推动产品的开发、优化以及市场化进程。以下是一份详尽的大模型产品经理学习路线,旨在助力你构建所需的知识体系,实现从零基础到精通的蜕变。一、基础知识阶段(一)计算机科学基础数据结构与算法:深入理解基本的数据结构(如数
- 销售易、极兔、珍客CRM:产品功能特色与企业适用性分析
程序员机器学习人工智能
销售易CRM产品功能移动化与社交化:销售易CRM支持iOS、Android等主流操作系统,销售人员可以随时随地访问客户信息、更新销售进度、创建任务等。同时,它还具备社交化功能,能够整合企业内部的社交网络,促进员工之间的协作与沟通。AI与大数据驱动:销售易CRM融合了人工智能和大数据技术,通过智能数据分析,帮助企业洞察客户行为和需求,预测销售趋势。例如,AI可以对客户数据进行深度挖掘,识别出高价值客
- 前瞻技术:塑造未来生活的新趋势
火龙果wa
生活人工智能经验分享
人工智能在艺术创作中的应用越来越普遍。AI可以生成画作、音乐和文学作品。它通过分析大量数据,学习艺术风格,并能创造出独特的作品。AI创作的艺术作品有几个特点。首先,它可以快速完成创作,节省时间。第二,AI能够融合多种风格。这使得作品更加多样化,有了新的表现形式。此外,AI常常会产生一些意想不到的创意,这能激发人们的灵感。艺术家与AI的合作也在逐渐发展。很多艺术家开始尝试与AI共同创作。他们使用AI
- 软件供应链风险检测与治理:研发团队如何应对复杂的安全挑战
安全测试
此分享来自于悬镜安全技术合伙人周幸在FCIS2024网络安全创新大会的实战攻防与供应链安全高峰论坛上的分享。01「软件供应链安全」背景首先我们要明确什么是软件供应链和软件供应链安全。大家在各种各样的场合其实都看到过一些类似的定义。软件供应链安全是指软件设计与开发的各个阶段,来自本身的编码过程、工具、设备或供应链上游的代码、模块和服务的安全,以及软件交付渠道和使用安全的总和。在软件供应链维度,我们可
- 4.Python教程--项目部署篇(全)
花开如雨
笔记
Python人工智能总目录人工智能总目录网页链接文章目录Python人工智能总目录13、Python运维Day0113.1运维1.运维概述2.运维工具3.Linux常用命令4.周期性计划任务5.awk的使用14、Python项目部署Day0114.1项目部署1.概念2.项目部署(nginx+uwsgi+django)3.部署在线商城项目13、Python运维Day0113.1运维1.运维概述1、运
- DeepSeek深度探索:从新手到高手的蜕变之旅
古龙飞扬
ai人工智能
引言在当今数字化与智能化的浪潮中,人工智能(AI)技术正以前所未有的速度改变着我们的生活和工作方式。DeepSeek,作为一款由杭州深度求索人工智能基础技术研究有限公司开发的人工智能模型,凭借其强大的功能和灵活的应用场景,成为了众多企业和专业人士的得力助手。本文将带你深入了解DeepSeek,从新手入门到高手进阶,掌握其核心功能与使用技巧,实现个人能力的蜕变。一、初识DeepSeek:人工智能的“
- 联想Y7000 2024版本笔记本 RTX4060安装ubuntu22.04双系统及深度学习环境配置
七七@你一起学习
深度学习python
目录1..制作启动盘2.Windows磁盘分区,删除原来ubuntu的启动项3.四个设置4.安装ubuntu5.ubuntu系统配置1..制作启动盘先下载镜像文件,注意版本对应。Rufus-轻松创建USB启动盘用rufus制作时,需要注意选择正确的分区类型和系统类型。不然安装的系统会有问题!2.Windows磁盘分区,删除原来ubuntu的启动项手把手教你调整电脑磁盘的分区大小_调整分区大小-CS
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- AI前端开发的国际化发展机遇:ScriptEcho助力全球化布局
2401_89747417
人工智能前端
在全球化的今天,互联网应用已不再局限于单一市场。高效便捷的前端开发方案成为企业拓展国际市场的关键。得益于人工智能技术的飞速发展,AI代码生成器正在深刻改变前端开发模式,为国际化应用开发带来前所未有的机遇。然而,国际化开发也面临着诸多挑战,例如不同地区用户习惯、技术标准、语言差异等等。本文将探讨AI前端开发在国际化市场中的机遇与挑战,并以ScriptEcho为例,分析AI工具如何助力企业实现高效的全
- 图像处理篇---基本OpenMV图像处理
Ronin-Lotus
图像处理篇嵌入式硬件篇图像处理人工智能计算机视觉python机器学习OpenMV
文章目录前言1.灰度化(Grayscale)2.二值化(Thresholding)3.掩膜(Mask)4.腐蚀(Erosion)5.膨胀(Dilation)6.缩放(Scaling)7.旋转(Rotation)8.平移(Translation)9.边缘检测(EdgeDetection)10.轮廓检测(ContourDetection)11.总结总结前言以上就是今天要讲的内容,本文仅仅简单介绍了Op
- keepalived+timescaladb主备切换高可用方案
handsomestWei
数据库keepalivedtimescaladbpostgresql数据库高可用
keepalived+timescaladb主备切换高可用方案环境和组件依赖ubuntu22.04,docker引擎keepalivedv2.2.4timescaledbdocker镜像wjy2020/timescaledb-repmgr:pg14.15-ts2.17.2,镜像使用参考方案思路在双机分别部署这两个组件,keepalived定时检测timescaladb数据库的主备状态,当数据库状态
- 中国人工智能的起步/发展,与这位数学家密切相关
东锋1.3
人工智能人工智能
1979年在中国是一个重要的年份。这一年发生了诸多大事,也被视为中国在政治、经济、科技、文化等多个领域的一个重要转折点和中国近现代历史重要的时期断代点之一。相比1979年所开启的波澜壮阔的新时代,中国人工智能(ArtificialIntelligence,AI)研究在1979年的起步只能算历史大潮中的一朵不起眼的浪花,但在中国人工智能的历史里,这是开天辟地的大事件。人工智能最早的学派是符号主义学派
- 今日AI和商界事件(2025-02-07)
LS_learner
AI和商界事件人工智能
今日AI领域的相关事件包括但不限于以下几个方面:一、政策与监管美国众议员推动禁止政府设备使用中国AI应用DeepSeek:美国众议院两名来自两党的议员提议立法,禁止联邦政府设备使用中国人工智能应用DeepSeek,理由是中国政府可能利用该应用进行监视和散布虚假信息。这一事件反映了地缘政治紧张背景下,各国在关键技术领域对自主性和安全性的重视。二、行业动态与发展OpenAI推进“星际之门”项目:Ope
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><