什么是线性关系?
x = 1 → y = 60 x = 2 → y = 65 x = 3 → y = 70 x = 4 → y = 75 x = 5 → y = ? ? ? x=1 \quad \rarr \quad y=60 \\ x=2 \quad \rarr \quad y=65 \\ x=3 \quad \rarr \quad y=70 \\ x=4 \quad \rarr \quad y=75 \\ x=5 \quad \rarr \quad y= ??? \\ x=1→y=60x=2→y=65x=3→y=70x=4→y=75x=5→y=???
假设一组数据符合一种线型规律,那么就可以预测未来将会出现的数据。
a b c d e f ?
{ a w 0 + b w 1 + c w 2 = d b w 0 + c w 1 + d w 2 = e c w 0 + d w 1 + e w 2 = f \begin{cases} aw_0 + bw_1 + cw_2 = d \\ bw_0 + cw_1 + dw_2 = e \\ cw_0 + dw_1 + ew_2 = f \\ \end{cases} ⎩⎪⎨⎪⎧aw0+bw1+cw2=dbw0+cw1+dw2=ecw0+dw1+ew2=f
线型方程组转换为矩阵相乘的形式:
[ a b c b c d c d e ] × [ w 0 w 1 w 2 ] = [ d e f ] A x B \left[ \begin{array}{ccc} a & b & c\\ b & c & d\\ c & d & e\\ \end{array} \right ] \times \left[ \begin{array}{ccc} w_0\\ w_1\\ w_2\\ \end{array} \right ]= \left[ \begin{array}{ccc} d\\ e\\ f\\ \end{array} \right ] \\ \quad \quad A \quad \quad \quad \quad \quad x\quad \quad \quad B \quad ⎣⎡abcbcdcde⎦⎤×⎣⎡w0w1w2⎦⎤=⎣⎡def⎦⎤AxB
根据线性模型的特点可以通过一组历史数据求出线性关系系数x, y, z,从而预测d、e、f下的一个数据是多少。
线性预测需要使用历史数据进行检验,让预测结果可信度更高
案例:使用线性预测,预测下一天的收盘价。
# 整理五元一次方程组 最终获取一组股票走势预测值
N = 5
pred_prices = np.zeros(closing_prices.size - 2 * N + 1)
for i in range(pred_prices.size):
a = np.zeros((N, N))
for j in range(N):
a[j, ] = closing_prices[i + j:i + j + N]
b = closing_prices[i + N:i + N * 2]
x = np.linalg.lstsq(a, b)[0]
pred_prices[i] = b.dot(x)
# 由于预测的是下一天的收盘价,所以想日期数组中追加一个元素,为下一个工作日的日期
dates = dates.astype(md.datetime.datetime)
mp.plot(dates, closing_prices, 'o-', c='lightgray', label='Closing Price')
dates = np.append(dates, dates[-1] + pd.tseries.offsets.BDay())
mp.plot(dates[2 * N:], pred_prices, 'o-',c='orangered',
linewidth=3,label='Predicted Price')
mp.legend()
mp.gcf().autofmt_xdate()
mp.show()
线性拟合可以寻求与一组散点走向趋势规律相适应的线型表达式方程。
有一组散点描述时间序列下的股价:
[x1, y1]
[x2, y2]
[x3, y3]
...
[xn, yn]
根据线型 y=kx + b 方程可得:
kx1 + b = y1
kx2 + b = y2
kx3 + b = y3
...
kxn + b = yn
[ x 1 1 x 2 1 x 3 1 x n 1 ] × [ k b ] = [ y 1 y 2 y 3 y n ] \left[ \begin{array}{ccc} x{_1} & 1\\ x{_2} & 1\\ x{_3} & 1 \\ x{_n} & 1 \\ \end{array} \right ] \times \left[ \begin{array}{ccc} k\\ b\\ \end{array} \right ]= \left[ \begin{array}{ccc} y{_1}\\ y{_2}\\ y{_3}\\ y{_n}\\ \end{array} \right ] ⎣⎢⎢⎡x1x2x3xn1111⎦⎥⎥⎤×[kb]=⎣⎢⎢⎡y1y2y3yn⎦⎥⎥⎤
样本过多,每两组方程即可求得一组k与b的值。np.linalg.lstsq(a, b) 可以通过最小二乘法求出所有结果中拟合误差最小的k与b的值。
案例:利用线型拟合画出股价的趋势线
dates, opening_prices, highest_prices, \
lowest_prices, closing_prices = np.loadtxt('../data/aapl.csv', delimiter=',',
usecols=(1, 3, 4, 5, 6), unpack=True,dtype='M8[D], f8, f8, f8, f8',
converters={
1: dmy2ymd})
trend_points = (highest_prices + lowest_prices + closing_prices) / 3
days = dates.astype(int)
a = np.column_stack((days, np.ones_like(days)))
x = np.linalg.lstsq(a, trend_points)[0]
trend_line = days * x[0] + x[1]
mp.figure('Trend', facecolor='lightgray')
mp.title('Trend', fontsize=20)
mp.xlabel('Date', fontsize=14)
mp.ylabel('Price', fontsize=14)
ax = mp.gca()
ax.xaxis.set_major_locator(md.WeekdayLocator(byweekday=md.MO))
ax.xaxis.set_minor_locator(md.DayLocator())
ax.xaxis.set_major_formatter(md.DateFormatter('%d %b %Y'))
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
dates = dates.astype(md.datetime.datetime)
rise = closing_prices - opening_prices >= 0.01
fall = opening_prices - closing_prices >= 0.01
fc = np.zeros(dates.size, dtype='3f4')
ec = np.zeros(dates.size, dtype='3f4')
fc[rise], fc[fall] = (1, 1, 1), (0.85, 0.85, 0.85)
ec[rise], ec[fall] = (0.85, 0.85, 0.85), (0.85, 0.85, 0.85)
mp.bar(dates, highest_prices - lowest_prices, 0,lowest_prices, color=fc, edgecolor=ec)
mp.bar(dates, closing_prices - opening_prices, 0.8,opening_prices, color=fc,
edgecolor=ec)
mp.scatter(dates, trend_points, c='dodgerblue',alpha=0.5, s=60, zorder=2)
mp.plot(dates, trend_line, linestyle='o-', c='dodgerblue',linewidth=3, label='Trend')
mp.legend()
mp.gcf().autofmt_xdate()
mp.show()
trend_points = (highest_prices + lowest_prices + closing_prices) / 3
spreads = highest_prices - lowest_prices
resistance_points = trend_points + spreads
days = dates.astype(int)
x = np.linalg.lstsq(a, resistance_points)[0]
resistance_line = days * x[0] + x[1]
mp.scatter(dates, resistance_points, c='orangered', alpha=0.5, s=60, zorder=2)
mp.plot(dates, resistance_line, c='orangered', linewidth=3, label='Resistance')
trend_points = (highest_prices + lowest_prices + closing_prices) / 3
spreads = highest_prices - lowest_prices
support_points = trend_points - spreads
days = dates.astype(int)
x = np.linalg.lstsq(a, support_points)[0]
support_line = days * x[0] + x[1]
mp.scatter(dates, support_points, c='limegreen', alpha=0.5, s=60, zorder=2)
mp.plot(dates, support_line, c='limegreen', linewidth=3, label='Support')
通过两组统计数据计算而得的协方差可以评估这两组统计数据的相似程度。
样本:
A = [a1, a2, ..., an]
B = [b1, b2, ..., bn]
平均值:
ave_a = (a1 + a2 +...+ an)/n
ave_b = (b1 + b2 +...+ bn)/n
离差(用样本中的每一个元素减去平均数,求得数据的误差程度):
dev_a = [a1, a2, ..., an] - ave_a
dev_b = [b1, b2, ..., bn] - ave_b
协方差
协方差可以简单反映两组统计样本的相关性,值为正,则为正相关;值为负,则为负相关,绝对值越大相关性越强。
cov_ab = ave(dev_a x dev_b)
cov_ba = ave(dev_b x dev_a)
案例:计算两组数据的协方差,并绘图观察。
import numpy as np
import matplotlib.pyplot as mp
a = np.random.randint(1, 30, 10)
b = np.random.randint(1, 30, 10)
#平均值
ave_a = np.mean(a)
ave_b = np.mean(b)
#离差
dev_a = a - ave_a
dev_b = b - ave_b
#协方差
cov_ab = np.mean(dev_a*dev_b)
cov_ba = np.mean(dev_b*dev_a)
print('a与b数组:', a, b)
print('a与b样本方差:', np.sum(dev_a**2)/(len(dev_a)-1), np.sum(dev_b**2)/(len(dev_b)-1))
print('a与b协方差:',cov_ab, cov_ba)
#绘图,查看两条图线的相关性
mp.figure('COV LINES', facecolor='lightgray')
mp.title('COV LINES', fontsize=16)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
x = np.arange(0, 10)
#a,b两条线
mp.plot(x, a, color='dodgerblue', label='Line1')
mp.plot(x, b, color='limegreen', label='Line2')
#a,b两条线的平均线
mp.plot([0, 9], [ave_a, ave_a], color='dodgerblue', linestyle='--', alpha=0.7, linewidth=3)
mp.plot([0, 9], [ave_b, ave_b], color='limegreen', linestyle='--', alpha=0.7, linewidth=3)
mp.grid(linestyle='--', alpha=0.5)
mp.legend()
mp.tight_layout()
mp.show()
相关系数
协方差除去两组统计样本标准差的乘积是一个[-1, 1]之间的数。该结果称为统计样本的相关系数。
# a组样本 与 b组样本做对照后的相关系数
cov_ab/(std_a x std_b)
# b组样本 与 a组样本做对照后的相关系数
cov_ba/(std_b x std_a)
# a样本与a样本作对照 b样本与b样本做对照 二者必然相等
cov_ab/(std_a x std_b)=cov_ba/(std_b x std_a)
通过相关系数可以分析两组数据的相关性:
若相关系数越接近于0,越表示两组样本越不相关。
若相关系数越接近于1,越表示两组样本正相关。
若相关系数越接近于-1,越表示两组样本负相关。
案例:输出案例中两组数据的相关系数。
print('相关系数:', cov_ab/(np.std(a)*np.std(b)), cov_ba/(np.std(a)*np.std(b)))
相关矩阵
[ v a r _ a s t d _ a × s t d _ a c o v _ a b s t d _ a × s t d _ b c o v _ b a s t d _ b × s t d _ a v a r _ b s t d _ b × s t d _ b ] \left[ \begin{array}{c} \frac{var\_a}{std\_a \times std\_a} & \frac{cov\_ab}{std\_a \times std\_b} \\ \frac{cov\_ba}{std\_b \times std\_a} & \frac{var\_b}{std\_b \times std\_b}\\ \end{array} \right ] [std_a×std_avar_astd_b×std_acov_bastd_a×std_bcov_abstd_b×std_bvar_b]
矩阵正对角线上的值都为1。(同组样本自己相比绝对正相关)
[ 1 c o v _ a b s t d _ a × s t d _ b c o v _ b a s t d _ b × s t d _ a 1 ] \left[ \begin{array}{ccc} 1 & \frac{cov\_ab}{std\_a \times std\_b} \\ \frac{cov\_ba}{std\_b \times std\_a} & 1\\ \end{array} \right ] [1std_b×std_acov_bastd_a×std_bcov_ab1]
numpy提供了求得相关矩阵的API:
# 相关矩阵
numpy.corrcoef(a, b)
# 相关矩阵的分子矩阵
# [[a方差,ab协方差], [ba协方差, b方差]]
numpy.cov(a, b) #协方差矩阵
多项式的一般形式:
y = p 0 x n + p 1 x n − 1 + p 2 x n − 2 + p 3 x n − 3 + . . . + p n y=p_{0}x^n + p_{1}x^{n-1} + p_{2}x^{n-2} + p_{3}x^{n-3} +...+p_{n} y=p0xn+p1xn−1+p2xn−2+p3xn−3+...+pn
多项式拟合的目的是为了找到一组 p 0 , p 1 , . . . , p n p_0, p_1, ..., p_n p0,p1,...,pn,使得拟合方程尽可能的与实际样本数据相符合。
假设拟合得到的多项式如下:
f ( x ) = p 0 x n + p 1 x n − 1 + p 2 x n − 2 + p 3 x n − 3 + . . . + p n f(x)=p_{0}x^n + p_{1}x^{n-1} + p_{2}x^{n-2} + p_{3}x^{n-3} +...+p_{n} f(x)=p0xn+p1xn−1+p2xn−2+p3xn−3+...+pn
则拟合函数与真实结果的差方如下
l o s s = ( y 1 − f ( x 1 ) ) 2 + ( y 2 − f ( x 2 ) ) 2 + . . . + ( y n − f ( x n ) ) 2 loss = (y_1-f(x_1))^2 + (y_2-f(x_2))^2 + ... + (y_n-f(x_n))^2 loss=(y1−f(x1))2+(y2−f(x2))2+...+(yn−f(xn))2
那么多项式拟合的过程即为求取一组 p 0 , p 1 , . . . , p n p_0, p_1, ..., p_n p0,p1,...,pn, 使得loss的值最小。
多项式拟合相关API:
根据一组样本,并给出最高次幂,求出拟合系数
np.polyfit(X, Y, 最高次幂)->P
多项式运算相关API:
根据拟合系数(装饰函数)与自变量求出拟合值, 由此可得拟合曲线坐标样本数据 [X, Y']
np.polyval(P, X)->Y'
多项式函数求导,根据拟合系数求出多项式函数导函数的系数
np.polyder(P)->Q
已知多项式系数Q 求多项式函数的根(与x轴交点的横坐标)
xs = np.roots(Q)
两个多项式函数的差函数的系数(可以通过差函数的根求取两个曲线的交点)
Q = np.polysub(P1, P2)
案例:求多项式 y = 4x3 + 3x2 - 1000x + 1曲线驻点的坐标。
'''
1. 求出多项式的导函数
2. 求出导函数的根,若导函数的根为实数,则该点则为曲线拐点。
'''
import numpy as np
import matplotlib.pyplot as mp
x = np.linspace(-20, 20, 1000)
y = 4*x**3 + 3*x**2 - 1000*x + 1
Q = np.polyder([4,3,-1000,1])
xs = np.roots(Q)
ys = 4*xs**3 + 3*xs**2 - 1000*xs + 1
mp.plot(x, y)
mp.scatter(xs, ys, s=80, c='orangered')
mp.show()
案例:使用多项式函数拟合两只股票bhp、vale的差价函数:
'''
1. 计算两只股票的差价
2. 利用多项式拟合求出与两只股票差价相近的多项式系数,最高次为4
3. 把该曲线的拐点都标出来。
'''
dates, bhp_closing_prices = np.loadtxt('../../data/bhp.csv',
delimiter=',',usecols=(1, 6), unpack=True,
dtype='M8[D], f8', conv erters={
1: dmy2ymd})
vale_closing_prices = np.loa dtxt('../../data/vale.csv', delimiter=',',
usecols=(6), unpack=True)
diff_closing_prices = bhp_closing_prices - vale_closing_prices
days = dates.astype(int)
p = np.polyfit(days, diff_closing_prices, 4)
poly_closing_prices = np.polyval(p, days)
q = np.polyder(p)
roots_x = np.roots(q)
roots_y = np.polyval(p, roots_x)
mp.figure('Polynomial Fitting', facecolor='lightgray')
mp.title('Polynomial Fitting', fontsize=20)
mp.xlabel('Date', fontsize=14)
mp.ylabel('Difference Price', fontsize=14)
ax = mp.gca()
ax.xaxis.set_major_locator(md.WeekdayLocator(byweekday=md.MO))
ax.xaxis.set_minor_locator(md.DayLocator())
ax.xaxis.set_major_formatter(md.DateFormatter('%d %b %Y'))
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
dates = dates.astype(md.datetime.datetime)
mp.plot(dates, poly_closing_prices, c='limegreen',
linewidth=3, label='Polynomial Fitting')
mp.scatter(dates, diff_closing_prices, c='dodgerblue',
alpha=0.5, s=60, label='Difference Price')
roots_x = roots_x.astype(int).astype('M8[D]').astype(
md.datetime.datetime)
mp.scatter(roots_x, roots_y, marker='^', s=80,
c='orangered', label='Peek', zorder=4)
mp.legend()
mp.gcf().autofmt_xdate()
mp.show()
数据的平滑处理通常包含有降噪、拟合等操作。降噪的功能意在去除额外的影响因素,拟合的目的意在数学模型化,可以通过更多的数学方法识别曲线特征。
案例:绘制两只股票收益率曲线。收益率 =(后一天收盘价-前一天收盘价) / 前一天收盘价
dates, bhp_closing_prices = np.loadtxt( '../data/bhp.csv', delimiter=',', usecols=(1,6), dtype='M8[D], f8',converters={
1:dmy2ymd}, unpack=True)
vale_closing_prices = np.loadtxt( '../data/vale.csv', delimiter=',', usecols=(6), dtype='f8',converters={
1:dmy2ymd}, unpack=True)
bhp_returns = np.diff(bhp_closing_prices) / bhp_closing_prices[:-1]
vale_returns = np.diff(vale_closing_prices) / vale_closing_prices[:-1]
dates = dates[:-1]
#卷积降噪
convolve_core = np.hanning(8)
convolve_core /= convolve_core.sum()
bhp_returns_convolved = np.convolve(bhp_returns, convolve_core, 'valid')
vale_returns_convolved = np.convolve(vale_returns, convolve_core, 'valid')
#绘制这条曲线
mp.figure('BHP VALE RETURNS', facecolor='lightgray')
mp.title('BHP VALE RETURNS', fontsize=20)
mp.xlabel('Date')
mp.ylabel('Price')
ax = mp.gca()
ax.xaxis.set_major_locator(md.WeekdayLocator(byweekday=md.MO))
ax.xaxis.set_minor_locator(md.DayLocator())
ax.xaxis.set_major_formatter(md.DateFormatter('%Y %m %d'))
dates = dates.astype('M8[D]')
#绘制收益线
mp.plot(dates, bhp_returns, color='dodgerblue', linestyle='--', label='bhp_returns', alpha=0.3)
mp.plot(dates, vale_returns, color='orangered', linestyle='--', label='vale_returns', alpha=0.3)
#绘制卷积降噪线
mp.plot(dates[7:], bhp_returns_convolved, color='dodgerblue', label='bhp_returns_convolved', alpha=0.5)
mp.plot(dates[7:], vale_returns_convolved, color='orangered', label='vale_returns_convolved', alpha=0.5)
mp.show()
#拟合这两条曲线,获取两组多项式系数
dates = dates.astype(int)
bhp_p = np.polyfit(dates[7:], bhp_returns_convolved, 3)
bhp_polyfit_y = np.polyval(bhp_p, dates[7:])
vale_p = np.polyfit(dates[7:], vale_returns_convolved, 3)
vale_polyfit_y = np.polyval(vale_p, dates[7:])
#绘制拟合线
mp.plot(dates[7:], bhp_polyfit_y, color='dodgerblue', label='bhp_returns_polyfit')
mp.plot(dates[7:], vale_polyfit_y, color='orangered', label='vale_returns_polyfit')
#求两条曲线的交点 f(bhp) = f(vale)的根
sub_p = np.polysub(bhp_p, vale_p)
roots_x = np.roots(sub_p) # 让f(bhp) - f(vale) = 0 函数的两个根既是两个函数的焦点
roots_x = roots_x.compress( (dates[0] <= roots_x) & (roots_x <= dates[-1]))
roots_y = np.polyval(bhp_p, roots_x)
#绘制这些点
mp.scatter(roots_x, roots_y, marker='D', color='green', s=60, zorder=3)
sign函数可以把样本数组的变成对应的符号数组,正数变为1,负数变为-1,0则变为0。
ary = np.sign(源数组)
净额成交量(OBV)
成交量可以反映市场对某支股票的人气,而成交量是一只股票上涨的能量。一支股票的上涨往往需要较大的成交量。而下跌时则不然。
若相比上一天的收盘价上涨,则为正成交量;若相比上一天的收盘价下跌,则为负成交量。
绘制OBV柱状图
dates, closing_prices, volumes = np.loadtxt(
'../../data/bhp.csv', delimiter=',',
usecols=(1, 6, 7), unpack=True,
dtype='M8[D], f8, f8', converters={
1: dmy2ymd})
diff_closing_prices = np.diff(closing_prices)
sign_closing_prices = np.sign(diff_closing_prices)
obvs = volumes[1:] * sign_closing_prices
mp.figure('On-Balance Volume', facecolor='lightgray')
mp.title('On-Balance Volume', fontsize=20)
mp.xlabel('Date', fontsize=14)
mp.ylabel('OBV', fontsize=14)
ax = mp.gca()
ax.xaxis.set_major_locator(md.WeekdayLocator(byweekday=md.MO))
ax.xaxis.set_minor_locator(md.DayLocator())
ax.xaxis.set_major_formatter(md.DateFormatter('%d %b %Y'))
mp.tick_params(labelsize=10)
mp.grid(axis='y', linestyle=':')
dates = dates[1:].astype(md.datetime.datetime)
mp.bar(dates, obvs, 1.0, color='dodgerblue',
edgecolor='white', label='OBV')
mp.legend()
mp.gcf().autofmt_xdate()
mp.show()
数组处理函数
ary = np.piecewise(源数组, 条件序列, 取值序列)
针对源数组中的每一个元素,检测其是否符合条件序列中的每一个条件,符合哪个条件就用取值系列中与之对应的值,表示该元素,放到目标 数组中返回。
条件序列: [a < 0, a == 0, a > 0]
取值序列: [-1, 0, 1]
a = np.array([70, 80, 60, 30, 40])
d = np.piecewise(
a,
[a < 60, a == 60, a > 60],
[-1, 0, 1])
# d = [ 1 1 0 -1 -1]
矢量化指的是用数组代替标量来操作数组里的每个元素。
numpy提供了vectorize函数,可以把处理标量的函数矢量化,返回的函数可以直接处理ndarray数组。
import math as m
import numpy as np
def foo(x, y):
return m.sqrt(x**2 + y**2)
x, y = 1, 4
print(foo(x, y))
X, Y = np.array([1, 2, 3]), np.array([4, 5, 6])
vectorized_foo = np.vectorize(foo)
print(vectorized_foo(X, Y))
print(np.vectorize(foo)(X, Y))
numpy还提供了frompyfuc函数,也可以完成与vectorize相同的功能:
# 把foo转换成矢量函数,该矢量函数接收2个参数,返回一个结果
fun = np.frompyfunc(foo, 2, 1)
fun(X, Y)
案例:定义一种买进卖出策略,通过历史数据判断这种策略是否值得实施。
dates, opening_prices, highest_prices, \
lowest_prices, closing_prices = np.loadtxt(
'../../data/bhp.csv', delimiter=',',
usecols=(1, 3, 4, 5, 6), unpack=True,
dtype='M8[D], f8, f8, f8, f8',
converters={
1: dmy2ymd})
# 定义一种投资策略
def profit(opening_price, highest_price,
lowest_price, closing_price):
buying_price = opening_price * 0.99
if lowest_price <= buying_price <= highest_price:
return (closing_price - buying_price) * \
100 / buying_price
return np.nan # 无效值
# 矢量化投资函数
profits = np.vectorize(profit)(opening_prices,
highest_prices, lowest_prices, closing_prices)
nan = np.isnan(profits)
dates, profits = dates[~nan], profits[~nan]
gain_dates, gain_profits = dates[profits > 0], profits[profits > 0]
loss_dates, loss_profits = dates[profits < 0], profits[profits < 0]
mp.figure('Trading Simulation', facecolor='lightgray')
mp.title('Trading Simulation', fontsize=20)
mp.xlabel('Date', fontsize=14)
mp.ylabel('Profit', fontsize=14)
ax = mp.gca()
ax.xaxis.set_major_locator(md.WeekdayLocator(byweekday=md.MO))
ax.xaxis.set_minor_locator(md.DayLocator())
ax.xaxis.set_major_formatter(md.DateFormatter('%d %b %Y'))
mp.tick_params(labelsize=10)
mp.grid(linestyle=':')
if dates.size > 0:
dates = dates.astype(md.datetime.datetime)
mp.plot(dates, profits, c='gray',
label='Profit')
mp.axhline(y=profits.mean(), linestyle='--',
color='gray')
if gain_dates.size > 0:
gain_dates = gain_dates.astype(md.datetime.datetime)
mp.plot(gain_dates, gain_profits, 'o',
c='orangered', label='Gain Profit')
mp.axhline(y=gain_profits.mean(), linestyle='--',
color='orangered')
if loss_dates.size > 0:
loss_dates = loss_dates.astype(md.datetime.datetime)
mp.plot(loss_dates, loss_profits, 'o',
c='limegreen', label='Loss Profit')
mp.axhline(y=loss_profits.mean(), linestyle='--',
color='limegreen')
mp.legend()
mp.gcf().autofmt_xdate()
mp.show()
矩阵是numpy.matrix类类型的对象,该类继承自numpy.ndarray,任何针对多维数组的操作,对矩阵同样有效,但是作为子类矩阵又结合其自身的特点,做了必要的扩充,比如:乘法计算、求逆等。
矩阵对象的创建
# 如果copy的值为True(缺省),所得到的矩阵对象与参数中的源容器共享同一份数
# 据,否则,各自拥有独立的数据拷贝。
numpy.matrix(
ary, # 任何可被解释为矩阵的二维容器
copy=True # 是否复制数据(缺省值为True,即复制数据)
)
# 等价于:numpy.matrix(..., copy=False)
# 由该函数创建的矩阵对象与参数中的源容器一定共享数据,无法拥有独立的数据拷贝
numpy.mat(任何可被解释为矩阵的二维容器)
# 该函数可以接受字符串形式的矩阵描述:
# 数据项通过空格分隔,数据行通过分号分隔。例如:'1 2 3; 4 5 6'
numpy.mat(拼块规则)
矩阵的乘法运算
# 矩阵的乘法:乘积矩阵的第i行第j列的元素等于
# 被乘数矩阵的第i行与乘数矩阵的第j列的点积
#
# 1 2 6
# X----> 3 5 7
# | 4 8 9
# |
# 1 2 6 31 60 74
# 3 5 7 46 87 116
# 4 8 9 64 120 161
e = np.mat('1 2 6; 3 5 7; 4 8 9')
print(e * e)
矩阵的逆矩阵
若两个矩阵A、B满足:AB = BA = E (E为单位矩阵),则成为A、B为逆矩阵。
e = np.mat('1 2 6; 3 5 7; 4 8 9')
print(e.I)
print(e * e.I)
ndarray提供了方法让多维数组替代矩阵的运算:
a = np.array([
[1, 2, 6],
[3, 5, 7],
[4, 8, 9]])
# 点乘法求ndarray的点乘结果,与矩阵的乘法运算结果相同
k = a.dot(a)
print(k)
# linalg模块中的inv方法可以求取a的逆矩阵
l = np.linalg.inv(a)
print(l)
案例:假设一帮孩子和家长出去旅游,去程坐的是bus,小孩票价为3元,家长票价为3.2元,共花了118.4;回程坐的是Train,小孩票价为3.5元,家长票价为3.6元,共花了135.2。分别求小孩和家长的人数。使用矩阵求解。
[ 3 3.2 3.5 3.6 ] × [ x y ] = [ 118.4 135.2 ] \left[ \begin{array}{ccc}3 & 3.2 \\3.5 & 3.6 \\\end{array} \right]\times\left[ \begin{array}{ccc}x \\ y \\\end{array} \right]= \left[ \begin{array}{ccc} 118.4 \\ 135.2 \\ \end{array} \right] [33.53.23.6]×[xy]=[118.4135.2]
import numpy as np
prices = np.mat('3 3.2; 3.5 3.6')
totals = np.mat('118.4; 135.2')
persons = prices.I * totals
print(persons)
把逆矩阵的概念推广到非方阵,即称为广义逆矩阵。
案例:斐波那契数列
1 1 2 3 5 8 13 21 34 …
X 1 1 1 1 1 1
1 0 1 0 1 0
--------------------------------
1 1 2 1 3 2 5 3
1 0 1 1 2 1 3 2
F^1 F^2 F^3 F^4 ... f^n
代码
import numpy as np
n = 35
# 使用递归实现斐波那契数列
def fibo(n):
return 1 if n < 3 else fibo(n - 1) + fibo(n - 2)
print(fibo(n))
# 使用矩阵实现斐波那契数列
print(int((np.mat('1. 1.; 1. 0.') ** (n - 1))[0, 0]))