HDU-4666 Hyperspace 曼哈顿距离

  题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4666

  题意:动态的增加或者删掉k维空间的点,求每次操作后剩下的点集中的最大的麦哈顿距离。

  如果是一维情况很好做,直接用个数据结构来维护就行了,那么多维情况怎么办?其实多维情况是可以降到一维情况的。考虑二维的情况:|xi-xj|+|yi-yj|,我们展开绝对值之后,就可以得到四个式子:(xi+yi)-(xj+yj), (-xi+yi)-(-xj+yj), (xi-yi)-(xj-yj), (-xi-yi)-(-xj-yj),根据不等式 |x|+|y|>=x+y,那么我们对所有的点求出(xi+yi),(xi-yi),(-xi+yi),(-xi-yi)这四个值,这里用状态s表示,总共有4种状态,00,01,10,11,0表示符号为正,1表示符号为负。那么分别对这四种状态求出最大值和最小值的差ans[i],那么最大的ans[i]就是答案了。多维情况类推。因为这里是动态的,所以我们维护一颗树就行了,堆,线段树。。。复杂度O(n*2^k*logn).

  1 //STATUS:C++_AC_5484MS_60452KB

  2 #include <functional>

  3 #include <algorithm>

  4 #include <iostream>

  5 //#include <ext/rope>

  6 #include <fstream>

  7 #include <sstream>

  8 #include <iomanip>

  9 #include <numeric>

 10 #include <cstring>

 11 #include <cassert>

 12 #include <cstdio>

 13 #include <string>

 14 #include <vector>

 15 #include <bitset>

 16 #include <queue>

 17 #include <stack>

 18 #include <cmath>

 19 #include <ctime>

 20 #include <list>

 21 #include <set>

 22 #include <map>

 23 using namespace std;

 24 //#pragma comment(linker,"/STACK:102400000,102400000")

 25 //using namespace __gnu_cxx;

 26 //define

 27 #define pii pair<int,int>

 28 #define mem(a,b) memset(a,b,sizeof(a))

 29 #define lson l,mid,rt<<1

 30 #define rson mid+1,r,rt<<1|1

 31 #define PI acos(-1.0)

 32 //typedef

 33 typedef __int64 LL;

 34 typedef unsigned __int64 ULL;

 35 //const

 36 const int N=60010;

 37 const int INF=0x3f3f3f3f;

 38 //const LL MOD=1000000007,STA=8000010;

 39 const LL LNF=1LL<<55;

 40 const double EPS=1e-9;

 41 const double OO=1e30;

 42 const int dx[4]={-1,0,1,0};

 43 const int dy[4]={0,1,0,-1};

 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};

 45 //Daily Use ...

 46 inline int sign(double x){return (x>EPS)-(x<-EPS);}

 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}

 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}

 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}

 50 template<class T> inline T Min(T a,T b){return a<b?a:b;}

 51 template<class T> inline T Max(T a,T b){return a>b?a:b;}

 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}

 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}

 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}

 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}

 56 //End

 57 

 58 int x[5];

 59 int hig[32][N<<2];

 60 int low[32][N<<2];

 61 

 62 int n,k,tot,wi,wx,tar;

 63 

 64 void update_hig(int l,int r,int rt)

 65 {

 66     if(l==r){hig[wi][rt]=tar;return;}

 67     int mid=(l+r)>>1;

 68     if(wx<=mid)update_hig(lson);

 69     else update_hig(rson);

 70     hig[wi][rt]=Max(hig[wi][rt<<1],hig[wi][rt<<1|1]);

 71 }

 72 

 73 void update_low(int l,int r,int rt)

 74 {

 75     if(l==r){low[wi][rt]=tar;return;}

 76     int mid=(l+r)>>1;

 77     if(wx<=mid)update_low(lson);

 78     else update_low(rson);

 79     low[wi][rt]=Min(low[wi][rt<<1],low[wi][rt<<1|1]);

 80 }

 81 

 82 int main(){

 83  //   freopen("in.txt","r",stdin);

 84     int i,j,op,cnt,p,sum,ans;

 85     while(~scanf("%d%d",&n,&k))

 86     {

 87         tot=1<<k;

 88         cnt=0;

 89         for(i=0;i<tot;i++){

 90             mem(hig[i],-INF);

 91             mem(low[i],INF);

 92         }

 93         for(i=1;i<=n;i++){

 94             scanf("%d",&op);

 95             op?cnt--:cnt++;

 96             if(op){

 97                 scanf("%d",&wx);

 98                 for(wi=0;wi<tot;wi++){

 99                     tar=-INF;

100                     update_hig(1,n,1);

101                     tar=INF;

102                     update_low(1,n,1);

103                 }

104             }

105             else {

106                 for(j=0;j<k;j++)

107                     scanf("%d",&x[j]);

108                 wx=i;

109                 for(wi=0;wi<tot;wi++){

110                     for(sum=p=0;p<k;p++){

111                         if(wi&(1<<p))sum+=x[p];

112                         else sum-=x[p];

113                     }

114                     tar=sum;

115                     update_hig(1,n,1);

116                     update_low(1,n,1);

117                 }

118             }

119 

120             if(cnt<=1){

121                 puts("0");

122                 continue;

123             }

124             ans=-INF;

125             for(j=0;j<tot;j++){

126                 ans=Max(ans,hig[j][1]-low[j][1]);

127             }

128             printf("%d\n",ans);

129         }

130     }

131     return 0;

132 }

 

你可能感兴趣的:(HDU)