题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4666
题意:动态的增加或者删掉k维空间的点,求每次操作后剩下的点集中的最大的麦哈顿距离。
如果是一维情况很好做,直接用个数据结构来维护就行了,那么多维情况怎么办?其实多维情况是可以降到一维情况的。考虑二维的情况:|xi-xj|+|yi-yj|,我们展开绝对值之后,就可以得到四个式子:(xi+yi)-(xj+yj), (-xi+yi)-(-xj+yj), (xi-yi)-(xj-yj), (-xi-yi)-(-xj-yj),根据不等式 |x|+|y|>=x+y,那么我们对所有的点求出(xi+yi),(xi-yi),(-xi+yi),(-xi-yi)这四个值,这里用状态s表示,总共有4种状态,00,01,10,11,0表示符号为正,1表示符号为负。那么分别对这四种状态求出最大值和最小值的差ans[i],那么最大的ans[i]就是答案了。多维情况类推。因为这里是动态的,所以我们维护一颗树就行了,堆,线段树。。。复杂度O(n*2^k*logn).
1 //STATUS:C++_AC_5484MS_60452KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //#pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=60010; 37 const int INF=0x3f3f3f3f; 38 //const LL MOD=1000000007,STA=8000010; 39 const LL LNF=1LL<<55; 40 const double EPS=1e-9; 41 const double OO=1e30; 42 const int dx[4]={-1,0,1,0}; 43 const int dy[4]={0,1,0,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 int x[5]; 59 int hig[32][N<<2]; 60 int low[32][N<<2]; 61 62 int n,k,tot,wi,wx,tar; 63 64 void update_hig(int l,int r,int rt) 65 { 66 if(l==r){hig[wi][rt]=tar;return;} 67 int mid=(l+r)>>1; 68 if(wx<=mid)update_hig(lson); 69 else update_hig(rson); 70 hig[wi][rt]=Max(hig[wi][rt<<1],hig[wi][rt<<1|1]); 71 } 72 73 void update_low(int l,int r,int rt) 74 { 75 if(l==r){low[wi][rt]=tar;return;} 76 int mid=(l+r)>>1; 77 if(wx<=mid)update_low(lson); 78 else update_low(rson); 79 low[wi][rt]=Min(low[wi][rt<<1],low[wi][rt<<1|1]); 80 } 81 82 int main(){ 83 // freopen("in.txt","r",stdin); 84 int i,j,op,cnt,p,sum,ans; 85 while(~scanf("%d%d",&n,&k)) 86 { 87 tot=1<<k; 88 cnt=0; 89 for(i=0;i<tot;i++){ 90 mem(hig[i],-INF); 91 mem(low[i],INF); 92 } 93 for(i=1;i<=n;i++){ 94 scanf("%d",&op); 95 op?cnt--:cnt++; 96 if(op){ 97 scanf("%d",&wx); 98 for(wi=0;wi<tot;wi++){ 99 tar=-INF; 100 update_hig(1,n,1); 101 tar=INF; 102 update_low(1,n,1); 103 } 104 } 105 else { 106 for(j=0;j<k;j++) 107 scanf("%d",&x[j]); 108 wx=i; 109 for(wi=0;wi<tot;wi++){ 110 for(sum=p=0;p<k;p++){ 111 if(wi&(1<<p))sum+=x[p]; 112 else sum-=x[p]; 113 } 114 tar=sum; 115 update_hig(1,n,1); 116 update_low(1,n,1); 117 } 118 } 119 120 if(cnt<=1){ 121 puts("0"); 122 continue; 123 } 124 ans=-INF; 125 for(j=0;j<tot;j++){ 126 ans=Max(ans,hig[j][1]-low[j][1]); 127 } 128 printf("%d\n",ans); 129 } 130 } 131 return 0; 132 }