hdu 5093 放置战舰 二分图匹配

http://acm.hdu.edu.cn/showproblem.php?pid=5093

给定一个MxN大小的图,有3种点,冰山、浮冰、海。现在希望能在图中放置尽可能多的船。船的四个方向上不能有其他的船,除非有冰山阻隔。


最自然的想到搜索,但是由于矩阵大小有50^2,显然会超时

其实可以将一行被冰山隔开且包含海水的连续区域叫做“块”。
把每个横向“块”看做二部图中的X中的顶点,竖向“块”看做集合中Y的顶点,若两个“块”有公共的顶点海水,于是就连一条边。这样就转换成了没有公共顶点的最大边集,即最大匹配。
我们怎么去求“块”呢?用一个2个二维数组xs,ys来对水平方向和垂直方向上的“块”进行编号,编号之后如果两个块有公共的海水的话,那么就在“块”与“块”之间连边,等于说是,这个点只能利用一次。

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define clr0(x) memset(x,0,sizeof(x))
#define clr1(x) memset(x,-1,sizeof(x))
using namespace std;

const int MAXN = 55;
const int MAXM = 1005;

struct Edge
{
    int v, next;
}edge[MAXM];

char map[MAXN][MAXN];
int first[MAXM], link1[MAXM];
bool vis[MAXM];

int n, m;
int cnt;
int xn;

int xs[MAXN][MAXN], ys[MAXN][MAXN];

void init()
{
    cnt = 0;
    clr1(first),clr1(link1);
    clr0(xs),clr0(ys);
}

void read_graph(int u, int v)
{
    edge[cnt].v = v;
    edge[cnt].next = first[u], first[u] = cnt++;
}

bool dfs(int u)
{
    for(int e = first[u]; e != -1; e = edge[e].next)
    {
        int v = edge[e].v;
        if(!vis[v])
        {
            vis[v] = 1;
            if(link1[v] == -1 || dfs(link1[v]))
            {
                link1[v] = u;
                return true;
            }
        }
    }
    return false;
}

void read_graph2()
{
    RD2(n,m);
    for(int i = 0; i < n; i++) scanf("%s", map[i]);
    int tot = 0;
    for(int i = 0; i < n; i++)
    {
        int flag = 0;
        for(int j = 0; j < m; j++)
        {
            if(map[i][j] == '*')
            {
                if(flag == 0) tot++;
                xs[i][j] = tot; flag = 1;
            }
            else if(map[i][j] == '#') flag = 0;
        }
    }
    xn = tot;
    tot = 0;
    for(int j = 0; j < m; j++)
    {
        int flag = 0;
        for(int i = 0; i < n; i++)
        {
            if(map[i][j] == '*')
            {
                if(flag == 0) tot++;
                ys[i][j] = tot; flag = 1;
            }
            else if(map[i][j] == '#') flag = 0;
        }
    }
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < m; j++)
        {
            int u = xs[i][j], v = ys[i][j];
            if(u && v)
            {
                read_graph(u, v);
            }
        }
    }
}

void solve()
{
    int ans = 0;
    for(int i = 1; i <= xn; i++)
    {
        clr0(vis);
        if(dfs(i)) ans++;
    }
    printf("%d\n", ans);
}

int main()
{
    int _;RD(_);
    while(_--)
    {
        init();
        read_graph2();
        solve();
    }
    return 0;
}


你可能感兴趣的:(HDU)