POJ-3436 ACM Computer Factory 网络流

  该题题义是这样的,有N台机器安排去组装电脑,每台电脑有P个零部件,一台可以出产的电脑必须要求每个部件都有。每台机器能够接受的本成品电脑不同,对于每个部件,输入数据给出了0(一定不能够在半成品上出现),1(一定要在上面出现),2(可以出现也可以不出现)。每台机器生产出来的半成品(或者成为了成品)的情况也有不同,对于每个部件0代表经过这个机器加工后,该号不见没有,相反,1代表有。

  由于每台机器的处理能力有限,所以这里要将点拆成边,点内的边赋值为产能,其他边均赋值为无穷大。对部件没有要求的机器为源点,对部件都有要求的机器为汇点。考虑好机器与机器之间的传递关系,建图后直接计算最大流,最后在遍历两两点之间的flow。

  代码如下:

#include <cstring>

#include <cstdlib>

#include <cstdio>

#include <algorithm>

#include <queue>

#define SP 0

#define T 2*N+1

#define INF 0x3fffffff

#define CP(x) (N+(x))

#define MAXN 110

using namespace std;



int P, N, cap[MAXN][MAXN], flow[MAXN][MAXN];

int c[MAXN], path[MAXN], MaxFlow;



struct Node

{

    int Q, S[15], D[15];

}e[55];



void init()

{

    MaxFlow = 0;

    memset(cap, 0, sizeof (cap));

    memset(flow, 0, sizeof (flow));

}



bool Start(int x)

{

    for (int i = 1; i <= P; ++i) {

        if (e[x].S[i] == 1) {

            return false;

        }

    }

    return true;

}



bool End(int x)

{

    for (int i = 1; i <= P; ++i) {

        if (e[x].D[i] == 0) {

            return false;

        }

    }

    return true;

}



bool OK(int x, int y)

{

    for (int i = 1; i <= P; ++i) {

        if (e[x].D[i] == 1 && (e[y].S[i] == 1 || e[y].S[i] == 2)) {

            continue;

        }

        else if (e[x].D[i] == 0 && (e[y].S[i] == 0 || e[y].S[i] == 2)) {

            continue;

        }

        else {

            return false;

        }

    }

    return true;

}

/*

3 4

15  0 0 0  0 1 0

10  0 0 0  0 1 1

30  0 1 2  1 1 1

3   0 2 1  1 1 1

*/

void bfs()

{

    int pos;

    bool finish = false;

    while (!finish) {

        memset(c, 0, sizeof (c));

        queue<int>q;

        c[SP] = INF;

        q.push(SP);

        while (!q.empty()) {

            if (c[T]) {

                break;

            }

            pos = q.front();

            q.pop();

            for (int i = 1; i <= T; ++i) {

                if (!c[i] && cap[pos][i] > flow[pos][i]) { 

                    c[i] = min(c[pos], cap[pos][i]-flow[pos][i]);

                    q.push(i);

                    path[i] = pos;

                }

            }   

        }

        if (c[T] == 0) {

            finish = true;

        }

        else {

            MaxFlow += c[T];

            pos = T;

            while (pos != SP) {

                flow[path[pos]][pos] += c[T];

                flow[pos][path[pos]] -= c[T];

                pos = path[pos];

            }

        }

    }

}



void print()

{

    int M = 0;

    for (int i = 1; i <= N; ++i) {

        for (int j = 1; j <= N; ++j) {

            if (flow[CP(i)][j] > 0) {

                ++M;

            }

        }

    }

    printf("%d %d\n", MaxFlow, M);

    for (int i = 1; i <= N; ++i) {

        for (int j = 1; j <= N; ++j) {

            if (flow[CP(i)][j] > 0) {

                printf("%d %d %d\n", i, j, flow[CP(i)][j]);

            }

        }

    } 

}



int main()

{

    while (scanf("%d %d", &P, &N) == 2) {

        init();

        for (int i = 1; i <= N; ++i) {

            scanf("%d", &e[i].Q);

            for (int j = 1; j <= P; ++j) {

                // 加工的条件

                scanf("%d", &e[i].S[j]);

            }

            for (int j = 1; j <= P; ++j) {

                // 出产的特性

                scanf("%d", &e[i].D[j]);

            }

        }

        for (int i = 1; i <= N; ++i) {

            if (Start(i)) {

                cap[SP][i] = INF;

            }

            if (End(i)) { 

                cap[CP(i)][T] = INF;

            }

            cap[i][CP(i)] = e[i].Q;

            for (int j = 1; j <= N; ++j) {

                if (OK(i, j)) {

                    cap[CP(i)][j] = INF;

                }

            }

        }

        bfs();

        print();

    }

    return 0;

}

你可能感兴趣的:(factory)