Spark Streaming-Kafka实例(Python与Java版本)

本文实现kafka与Spark Streaming之间的通信,其中Kafka端producer实现使用Java,Spark Streaming端Consumer使用Python实现。

首先安装kafka与spark streaming环境,kafka测试连通测试参考上文,本文的实验环境都为本地单机版本。

Kafka

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;

public class producer {
     
    private final static String TOPIC = "data-message";
    private final static String BOOTSTRAP_SERVER = "127.0.0.1:9092";


    public static Producer createProducer() {
        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,BOOTSTRAP_SERVER);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());

        return new KafkaProducer<>(props);
    }

    // 实现自定义partition
    public static int partition(long time){
        if(time%2 == 0)
            return 0;
        else
            return 1;
    }
    public static void runProducer() throws Exception{
        final Producer producer = createProducer();
        long time  = System.currentTimeMillis();
        long curTime = time;
        try{
            while(true){
                curTime = System.currentTimeMillis();
                if(curTime-time == 10000){
                    final ProducerRecord record =
                            new ProducerRecord<>(TOPIC, partition(curTime) ,"JP_"+curTime,"AUX|989|bid|276|"+curTime);
                    RecordMetadata metadata = producer.send(record).get();
                    long elapsedTime = System.currentTimeMillis() - time;
                    System.out.printf("sent record(key=%s value=%s) " +
                            "meta(partition=%d, offset=%d) time=%d\n",
                    record.key(), record.value(), metadata.partition(),
                    metadata.offset(), elapsedTime);
                    curTime = time = System.currentTimeMillis();
                }
            }
        } finally {
            producer.flush();
            producer.close();
        }   
    }
    public static void main(String[] args) throws Exception{
            runProducer();
    }
}

Spark Streaming实现了Spark Steaming两者通信方式,createStream和createDirectStream

import os

from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
import json
import configparser

def startReceiver(config,topics,ssc):
    #connect kafka
    kafkaStreams = [KafkaUtils.createStream(ssc,config.get('oppo','zookeeper'),
                                       config.get('oppo','consumer'),topics) for _ in range(int(config.get('oppo','numStreams')))]
    uniStream = ssc.union(*kafkaStreams)

    stream = uniStream.map(lambda x: x[0])

    stream.pprint()

    ssc.start()
    ssc.awaitTermination()

def startDirect(config,topic,ssc):
    brokerList = config.get('oppo','brokerList')
    #connect kafka
    kafkaStreams = KafkaUtils.createDirectStream(ssc,[config.get('oppo','topic')],
                                                  {
    "metadata.broker.list":brokerList})
    stream = kafkaStreams.map(lambda x: x[1])
    stream.pprint()

    ssc.start()
    ssc.awaitTermination()

if __name__ == '__main__':
    config = configparser.SafeConfigParser()
    config.read("properties.conf")

    sc = SparkContext(appName=config.get('oppo', 'appName'))
    sc.setLogLevel(config.get('oppo', 'logLevel'))

    # create Streaming Context
    # deal with internal 10 seconds
    ssc = StreamingContext(sc, 10)

    topic = config.get('oppo', 'topic')
    topics = {topic: 0, topic: 1}

    #startReceiver(config,topics,ssc)
    startDirect(config,topic,ssc)

properties.conf配置文件

[oppo]
appName = SparkStreamingKafka
logLevel = WARN
topic = data-message
partitions = 2
zookeeper=127.0.0.1:2181
numStreams = 2
consumer = spark-streaming
brokerList=127.0.0.1:9092

你可能感兴趣的:(python,java,大数据,架构,大数据,spark,Streaming,kafka,spark,streaming)