scrapy入门(一)

  • Scrapy是用纯Python实现一个为了爬取网站数据、提取结构性数据而编写的应用框架,用途非常广泛。
  • 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。
  • Scrapy 使用了 Twisted异步网络框架来处理网络通讯,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活的完成各种需求。

scrapy流程图
旧版


scrapy入门(一)_第1张图片
image

新版


scrapy入门(一)_第2张图片
image

组件及调用流程(数据流)

Scrapy Engine(引擎): 负责Spider、ItemPipeline、Downloader、Scheduler中间的通讯,信号、数据传递等。

Scheduler(调度器): 它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎。

Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider来处理,

Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器),

Item Pipeline(管道):它负责处理Spider中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方.

Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩展下载功能的组件。

Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展和操作引擎和Spider中间通信的功能组件(比如进入Spider的Responses;和从Spider出去的Requests)

数据流(Data flow)

  1. 引擎打开一个网站(open a domain),找到处理该网站的Spider并向该spider请求第一个要爬取的URL(s)。
  2. 引擎从Spider中获取到第一个要爬取的URL并在调度器(Scheduler)以Request调度。
  3. 引擎向调度器请求下一个要爬取的URL。
  4. 调度器返回下一个要爬取的URL给引擎,引擎将URL通过下载中间件(请求(request)方向)转发给下载器(Downloader)。
  5. 一旦页面下载完毕,下载器生成一个该页面的Response,并将其通过下载中间件(返回(response)方向)发送给引擎。
  6. 引擎从下载器中接收到Response并通过Spider中间件(输入方向)发送给Spider处理。
  7. Spider处理Response并返回爬取到的Item及(跟进的)新的Request给引擎。
  8. 引擎将(Spider返回的)爬取到的Item给Item Pipeline,将(Spider返回的)Request给调度器。
  9. (从第二步)重复直到调度器中没有更多地request,引擎关闭该网站。

引擎获取起始url并发起请求,将获取的响应内容返回给spider,
在spider中进行数据的提取和下一个url的链接,
数据交给item和pipeline进行处理,
url继续发起请求,

编写spider

制作 Scrapy 爬虫 一共需要4步:

  1. 新建项目 (scrapy startproject xxx):新建一个新的爬虫项目
  2. 明确目标 (编写items.py):明确你想要抓取的目标
  3. 制作爬虫 (spiders/xxspider.py):制作爬虫开始爬取网页
  4. 存储内容 (pipelines.py):设计管道存储爬取内容

命令行输入
scrapy startproject tutorial

目录结构

scrapy.cfg: 项目的配置文件;(用于发布到服务器)
tutorial/: 该项目文件夹。之后将在此编写Python代码。
tutorial/items.py: 项目中的item文件;(定义结构化数据字段field).
tutorial/pipelines.py: 项目中的pipelines文件;(用于存放执行后期数据处理的功能,定义如何存储结构化数据)
tutorial/settings.py: 项目的设置文件;(如何修改User-Agent,设置爬取时间间隔,设置代理,配置中间件等等)
tutorial/spiders/: 放置spider代码的目录;(编写爬取网站规则)

定义item,在items.py文件中编写item
类似与django

import scrapy

class DmozItem(scrapy.Item):
    title = scrapy.Field()
    link = scrapy.Field()
    desc = scrapy.Field()

编写spider

Spider是用户编写用于从单个网站(或者一些网站)爬取数据的类。
其包含了一个用于下载的初始URL,如何跟进网页中的链接以及如何分析页面中的内容, 提取生成 item 的方法。

为了创建一个Spider,您必须继承scrapy.Spider 类, 且定义一些属性:

  • name: 用于区别Spider。 该名字必须是唯一的。
  • start_urls: 包含了Spider在启动时进行爬取的url列表。 因此,第一个被获取到的页面将是其中之一。 后续的URL则从初始的URL获取到的数据中提取。
  • parse()spider的一个方法。 被调用时,每个初始URL完成下载后生成的 Response 对象将会作为唯一的参数传递给该函数。 该方法负责解析返回的数据(response data),提取数据(生成item)以及生成需要进一步处理的URL的 Request 对象。

scrapy genspider name "example.com"

import scrapy

class DmozSpider(scrapy.Spider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        filename = response.url.split("/")[-2] + '.html'
        with open(filename, 'wb') as f:
            f.write(response.body)

启动爬虫

scrapy crawl dmoz

提取Item

Selectors选择器简介
https://scrapy-chs.readthedocs.io/zh_CN/1.0/topics/selectors.html
Scrapy Selectors内置XPathCSS Selector表达式机制

Selector有四个基本的方法:

  1. xpath(): 传入xpath表达式,返回该表达式所对应的所有节点的selector list列表
  2. extract(): 序列化该节点为Unicode字符串并返回list
  3. css(): 传入CSS表达式,返回该表达式所对应的所有节点的selector list列表,语法同 BeautifulSoup4
  4. re(): 根据传入的正则表达式对数据进行提取,返回Unicode字符串list列表

通过shell可以很方便的提取出需要的数据

Item Pipelines

当Item在Spider中被收集之后,它将会被传递到Item Pipeline
每个Item Pipeline组件接收到Item,定义一些操作行为,比如决定此Item是丢弃而存储。
以下是item pipeline的一些典型应用:

  1. 验证爬取的数据(检查item包含某些字段,比如说name字段)
  2. 查重(并丢弃)
  3. 将爬取结果保存到文件或者数据库中

编写item pipeline

编写item pipeline很简单,item pipiline组件是一个独立的Python类,其中process_item()方法必须实现:

import something

class SomethingPipeline(object):
    def __init__(self):    
        # 可选实现,做参数初始化等
        # doing something

    def process_item(self, item, spider):
        # item (Item 对象) – 被爬取的item
        # spider (Spider 对象) – 爬取该item的spider
        # 这个方法必须实现,每个item pipeline组件都需要调用该方法,
        # 这个方法必须返回一个 Item 对象,被丢弃的item将不会被之后的pipeline组件所处理。
        return item

    def open_spider(self, spider):
        # spider (Spider 对象) – 被开启的spider
        # 可选实现,当spider被开启时,这个方法被调用。

    def close_spider(self, spider):
        # spider (Spider 对象) – 被关闭的spider
        # 可选实现,当spider被关闭时,这个方法被调用

将item写入json文件

import json

class JsonWriterPipeline(object):

    def __init__(self):
        self.file = open('items.json', 'wb')

    def process_item(self, item, spider):
        line = json.dumps(dict(item),ensure_ascii=False) + "\n"
        self.file.write(line)
        return item

启用一个Item Pipeline组件

为了启用Item Pipeline组件,必须将它的类添加到 settings.py文件ITEM_PIPELINES 配置,就像下面这个例子:

ITEM_PIPELINES = {
    #'tutorial.pipelines.PricePipeline': 300,
    'tutorial.pipelines.JsonWriterPipeline': 800,
}

分配给每个类的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。数值越低,越先运行

将item写入MongoDB

pipeline中还有一个from_crawler(cls, crawler)类方法
如果使用,这个类方法被调用创建爬虫管道实例。必须返回管道的一个新实例。crawler提供存取所有Scrapy核心组件配置和信号管理器; 对于pipelines这是一种访问配置和信号管理器 的方式。

在这个例子中,我们将使用pymongo将Item写到MongoDB。MongoDB的地址和数据库名称在Scrapy setttings.py配置文件中;
这个例子主要是说明如何使用from_crawler()方法

import pymongo

class MongoPipeline(object):

    collection_name = 'scrapy_items'

    def __init__(self, mongo_uri, mongo_db):
        self.mongo_uri = mongo_uri
        self.mongo_db = mongo_db

    @classmethod
    def from_crawler(cls, crawler):
        return cls(
            mongo_uri=crawler.settings.get('MONGO_URI'),
            mongo_db=crawler.settings.get('MONGO_DATABASE', 'items')
        )

    def open_spider(self, spider):
        self.client = pymongo.MongoClient(self.mongo_uri)
        self.db = self.client[self.mongo_db]

    def close_spider(self, spider):
        self.client.close()

    def process_item(self, item, spider):
        self.db[self.collection_name].insert(dict(item))
        return item

Spiders

https://scrapy-chs.readthedocs.io/zh_CN/1.0/topics/spiders.html
Spider类定义了如何爬取某个(或某些)网站。包括了爬取的动作(例如:是否跟进链接)以及如何从网页的内容中提取结构化数据(爬取item)。 换句话说,Spider就是定义爬取的动作及分析某个网页(或者是有些网页)的地方。

Spider

class scrapy.spider.Spider
Spider是最简单的spider。每个spider必须继承自该类。Spider并没有提供什么特殊的功能。其仅仅请求给定的 start_urls/start_requests,并根据返回的结果调用spider的parse方法。

源码参考

#所有爬虫的基类,用户定义的爬虫必须从这个类继承
class Spider(object_ref):

    #定义spider名字的字符串(string)。spider的名字定义了Scrapy如何定位(并初始化)spider,所以其必须是唯一的。
    #name是spider最重要的属性,而且是必须的。
    #一般做法是以该网站(domain)(加或不加 后缀 )来命名spider。 例如,如果spider爬取 mywebsite.com ,该spider通常会被命名为 mywebsite
    name = None

    #初始化,提取爬虫名字,start_ruls
    def __init__(self, name=None, **kwargs):
        if name is not None:
            self.name = name
        # 如果爬虫没有名字,中断后续操作则报错
        elif not getattr(self, 'name', None):
            raise ValueError("%s must have a name" % type(self).__name__)

        # python 对象或类型通过内置成员__dict__来存储成员信息
        self.__dict__.update(kwargs)

        #URL列表。当没有指定的URL时,spider将从该列表中开始进行爬取。 因此,第一个被获取到的页面的URL将是该列表之一。 后续的URL将会从获取到的数据中提取。
        if not hasattr(self, 'start_urls'):
            self.start_urls = []

    # 打印Scrapy执行后的log信息
    def log(self, message, level=log.DEBUG, **kw):
        log.msg(message, spider=self, level=level, **kw)

    # 判断对象object的属性是否存在,不存在做断言处理
    def set_crawler(self, crawler):
        assert not hasattr(self, '_crawler'), "Spider already bounded to %s" % crawler
        self._crawler = crawler

    @property
    def crawler(self):
        assert hasattr(self, '_crawler'), "Spider not bounded to any crawler"
        return self._crawler

    @property
    def settings(self):
        return self.crawler.settings

    #该方法将读取start_urls内的地址,并为每一个地址生成一个Request对象,交给Scrapy下载并返回Response
    #该方法仅调用一次
    def start_requests(self):
        for url in self.start_urls:
            yield self.make_requests_from_url(url)

    #start_requests()中调用,实际生成Request的函数。
    #Request对象默认的回调函数为parse(),提交的方式为get
    def make_requests_from_url(self, url):
        return Request(url, dont_filter=True)

    #默认的Request对象回调函数,处理返回的response。
    #生成Item或者Request对象。用户必须实现这个类
    def parse(self, response):
        raise NotImplementedError

    @classmethod
    def handles_request(cls, request):
        return url_is_from_spider(request.url, cls)

    def __str__(self):
        return "<%s %r at 0x%0x>" % (type(self).__name__, self.name, id(self))

    __repr__ = __str__

主要属性和方法

  • name

定义spider名字的字符串。
例如,如果spider爬取 mywebsite.com ,该spider通常会被命名为 mywebsite

  • allowed_domains

包含了spider允许爬取的域名(domain)的列表,可选。

  • start_urls

初始URL元祖/列表。当没有制定特定的URL时,spider将从该列表中开始进行爬取。

  • start_requests(self)

该方法必须返回一个可迭代对象(iterable)。该对象包含了spider用于爬取(默认实现是使用start_urls 的url)的第一个Request。
当spider启动爬取并且未指定start_urls时,该方法被调用。

  • parse(self, response)

当请求url返回网页没有指定回调函数时,默认的Request对象回调函数。用来处理网页返回的response,以及生成Item或者Request对象。

  • log(self, message[, level, component])

使用 scrapy.log.msg() 方法记录(log)message。 更多数据请参见 logging

腾讯招聘网自动翻页
(代码采集自互联网)

from mySpider.items import TencentItem
import scrapy
import re

class TencentSpider(scrapy.Spider):
    name = "tencent"
    allowed_domains = ["hr.tencent.com"]
    start_urls = [
        "http://hr.tencent.com/position.php?&start=0#a"
    ]

    def parse(self, response):
        for each in response.xpath('//*[@class="even"]'):

            item = TencentItem()
            name = each.xpath('./td[1]/a/text()').extract()[0]
            detailLink = each.xpath('./td[1]/a/@href').extract()[0]
            positionInfo = each.xpath('./td[2]/text()').extract()[0]
            peopleNumber = each.xpath('./td[3]/text()').extract()[0]
            workLocation = each.xpath('./td[4]/text()').extract()[0]
            publishTime = each.xpath('./td[5]/text()').extract()[0]

            #print name, detailLink, catalog, peopleNumber, workLocation,publishTime

            item['name'] = name.encode('utf-8')
            item['detailLink'] = detailLink.encode('utf-8')
            item['positionInfo'] = positionInfo.encode('utf-8')
            item['peopleNumber'] = peopleNumber.encode('utf-8')
            item['workLocation'] = workLocation.encode('utf-8')
            item['publishTime'] = publishTime.encode('utf-8')

            curpage = re.search('(\d+)',response.url).group(1)
            page = int(curpage) + 10
            url = re.sub('\d+', str(page), response.url)

            # 发送新的url请求加入待爬队列,并调用回调函数 self.parse
            yield scrapy.Request(url, callback = self.parse)

            # 将获取的数据交给pipeline
            yield item

CrawlSpider

通过下面的命令可以快速创建 CrawlSpider模板 的代码:

scrapy genspider -t crawl tencent tencent.com

class scrapy.spiders.CrawlSpider
它是Spider的派生类,Spider类的设计原则是只爬取start_url列表中的网页,而CrawlSpider类定义了一些规则(rule)来提供跟进link的方便的机制,从爬取的网页中获取link并继续爬取的工作更适合。

源码解析参考

class CrawlSpider(Spider):
    rules = ()
    def __init__(self, *a, **kw):
        super(CrawlSpider, self).__init__(*a, **kw)
        self._compile_rules()

    #首先调用parse()来处理start_urls中返回的response对象
    #parse()则将这些response对象传递给了_parse_response()函数处理,并设置回调函数为parse_start_url()
    #设置了跟进标志位True
    #parse将返回item和跟进了的Request对象    
    def parse(self, response):
        return self._parse_response(response, self.parse_start_url, cb_kwargs={}, follow=True)

    #处理start_url中返回的response,需要重写
    def parse_start_url(self, response):
        return []

    def process_results(self, response, results):
        return results

    #从response中抽取符合任一用户定义'规则'的链接,并构造成Resquest对象返回
    def _requests_to_follow(self, response):
        if not isinstance(response, HtmlResponse):
            return
        seen = set()
        #抽取之内的所有链接,只要通过任意一个'规则',即表示合法
        for n, rule in enumerate(self._rules):
            links = [l for l in rule.link_extractor.extract_links(response) if l not in seen]
            #使用用户指定的process_links处理每个连接
            if links and rule.process_links:
                links = rule.process_links(links)
            #将链接加入seen集合,为每个链接生成Request对象,并设置回调函数为_repsonse_downloaded()
            for link in links:
                seen.add(link)
                #构造Request对象,并将Rule规则中定义的回调函数作为这个Request对象的回调函数
                r = Request(url=link.url, callback=self._response_downloaded)
                r.meta.update(rule=n, link_text=link.text)
                #对每个Request调用process_request()函数。该函数默认为indentify,即不做任何处理,直接返回该Request.
                yield rule.process_request(r)

    #处理通过rule提取出的连接,并返回item以及request
    def _response_downloaded(self, response):
        rule = self._rules[response.meta['rule']]
        return self._parse_response(response, rule.callback, rule.cb_kwargs, rule.follow)

    #解析response对象,会用callback解析处理他,并返回request或Item对象
    def _parse_response(self, response, callback, cb_kwargs, follow=True):
        #首先判断是否设置了回调函数。(该回调函数可能是rule中的解析函数,也可能是 parse_start_url函数)
        #如果设置了回调函数(parse_start_url()),那么首先用parse_start_url()处理response对象,
        #然后再交给process_results处理。返回cb_res的一个列表
        if callback:
            #如果是parse调用的,则会解析成Request对象
            #如果是rule callback,则会解析成Item
            cb_res = callback(response, **cb_kwargs) or ()
            cb_res = self.process_results(response, cb_res)
            for requests_or_item in iterate_spider_output(cb_res):
                yield requests_or_item

        #如果需要跟进,那么使用定义的Rule规则提取并返回这些Request对象
        if follow and self._follow_links:
            #返回每个Request对象
            for request_or_item in self._requests_to_follow(response):
                yield request_or_item

    def _compile_rules(self):
        def get_method(method):
            if callable(method):
                return method
            elif isinstance(method, basestring):
                return getattr(self, method, None)

        self._rules = [copy.copy(r) for r in self.rules]
        for rule in self._rules:
            rule.callback = get_method(rule.callback)
            rule.process_links = get_method(rule.process_links)
            rule.process_request = get_method(rule.process_request)

    def set_crawler(self, crawler):
        super(CrawlSpider, self).set_crawler(crawler)
        self._follow_links = crawler.settings.getbool('CRAWLSPIDER_FOLLOW_LINKS', True)

CrawlSpider继承于Spider类,除了继承过来的属性外(name、allow_domains),还提供了新的属性和方法:

LinkExtractors

class scrapy.linkextractors.LinkExtractor
Link Extractors 的目的很简单: 提取链接。
每个LinkExtractor有唯一的公共方法是 extract_links(),它接收一个 Response 对象,并返回一个 scrapy.link.Link 对象。

Link Extractors要实例化一次,并且 extract_links 方法会根据不同的response调用多次提取链接。

class scrapy.linkextractors.LinkExtractor(
    allow = (),
    deny = (),
    allow_domains = (),
    deny_domains = (),
    deny_extensions = None,
    restrict_xpaths = (),
    tags = ('a','area'),
    attrs = ('href'),
    canonicalize = True,
    unique = True,
    process_value = None
)

主要参数:

  • allow:满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。
  • deny:与这个正则表达式(或正则表达式列表)不匹配的URL一定不提取。
  • allow_domains:会被提取的链接的domains。
  • deny_domains:一定不会被提取链接的domains。
  • restrict_xpaths:使用xpath表达式,和allow共同作用过滤链接。
rules

在rules中包含一个或多个Rule对象,每个Rule对爬取网站的动作定义了特定操作。如果多个rule匹配了相同的链接,则根据规则在本集合中被定义的顺序,第一个会被使用。

class scrapy.spiders.Rule(
        link_extractor, 
        callback = None, 
        cb_kwargs = None, 
        follow = None, 
        process_links = None, 
        process_request = None
)
  • link_extractor:是一个Link Extractor对象,用于定义需要提取的链接。
  • callback: 从link_extractor中每获取到链接时,参数所指定的值作为回调函数,该回调函数接受一个response作为其第一个参数。

注意:当编写爬虫规则时,避免使用parse作为回调函数。由于CrawlSpider使用parse方法来实现其逻辑,如果覆盖了 parse方法,crawl spider将会运行失败。

  • follow:是一个布尔(boolean)值,指定了根据该规则从response提取的链接是否需要跟进。 如果callback为None,follow 默认设置为True ,否则默认为False。
  • process_links:指定该spider中哪个的函数将会被调用,从link_extractor中获取到链接列表时将会调用该函数。该方法主要用来过滤。
  • process_request:指定该spider中哪个的函数将会被调用, 该规则提取到每个request时都会调用该函数。 (用来过滤request)

翻页

import scrapy
from scrapy.spiders import CrawlSpider, Rule
from scrapy.linkextractors import LinkExtractor
from mySpider.items import TencentItem

class TencentSpider(CrawlSpider):
    name = "tencent"
    allowed_domains = ["hr.tencent.com"]
    start_urls = [
        "http://hr.tencent.com/position.php?&start=0#a"
    ]

    page_lx = LinkExtractor(allow=("start=\d+"))

    rules = [
        Rule(page_lx, callback = "parseContent", follow = True)
    ]

    def parseContent(self, response):
        for each in response.xpath('//*[@class="even"]'):
            name = each.xpath('./td[1]/a/text()').extract()[0]
            detailLink = each.xpath('./td[1]/a/@href').extract()[0]
            positionInfo = each.xpath('./td[2]/text()').extract()[0]

            peopleNumber = each.xpath('./td[3]/text()').extract()[0]
            workLocation = each.xpath('./td[4]/text()').extract()[0]
            publishTime = each.xpath('./td[5]/text()').extract()[0]
            #print name, detailLink, catalog,recruitNumber,workLocation,publishTime

            item = TencentItem()
            item['name']=name.encode('utf-8')
            item['detailLink']=detailLink.encode('utf-8')
            item['positionInfo']=positionInfo.encode('utf-8')
            item['peopleNumber']=peopleNumber.encode('utf-8')
            item['workLocation']=workLocation.encode('utf-8')
            item['publishTime']=publishTime.encode('utf-8')

            yield item
process_links参数:动态网页爬取,动态url的处理

某些网站会为每一个url增加一个sessionid属性,可能是为了标记用户访问历史,而且这个seesionid随着每次访问都会动态变化,这就为爬虫的去重处理(即标记已经爬取过的网站)和提取规则增加了难度。
https://bitsharestalk.org/index.php?board=5.0会变成https://bitsharestalk.org/index.phpPHPSESSID=9771d42640ab3c89eb77e8bd9e220b53&board=5.0,下面介绍集中处理方法
仅适用你的爬虫使用的是 scrapy.contrib.spiders.CrawlSpider, 在这个内置爬虫中,你提取url要通过Rule类来进行提取,其自带了对提取后的url进行加工的函数。

rules =  (
    Rule(LinkExtractor(allow = ( "https://bitsharestalk\.org/index\.php\?PHPSESSID\S*board=\d+\.\d+$", "https://bitsharestalk\.org/index\.php\?board=\d+\.\d+$" )), process_links = 'link_filtering' ), #默认函数process_links

    Rule(LinkExtractor(allow = ( " https://bitsharestalk\.org/index\.php\?PHPSESSID\S*topic=\d+\.\d+$" ,  "https://bitsharestalk\.org/index\.php\?topic=\d+\.\d+$", ),),
    callback = "extractPost" ,
    follow = True, process_links = 'link_filtering' ),

    Rule(LinkExtractor(allow = ( "https://bitsharestalk\.org/index\.php\?PHPSESSID\S*action=profile;u=\d+$" ,  "https://bitsharestalk\.org/index\.php\?action=profile;u=\d+$" , ),),
    callback =  "extractUser", process_links = 'link_filtering' )
)

def link_filtering(self, links):

    ret = []

    for link  in links:
        url = link.url
    # print "This is the yuanlai ", link.url 
    urlfirst, urllast = url.split( " ? " )

    if urllast:
        link.url = urlfirst +  " ? " + urllast.split( " & " , 1)[1]
    # print link.url
    return links
process_request参数:修改请求参数
class WeiboSpider(CrawlSpider):
    name = 'weibo'
    allowed_domains = ['weibo.com']
    start_urls = ['http://www.weibo.com/u/1876296184']  # 不加www,则匹配不到cookie, get_login_cookie()方法正则代完善
    rules = (
        Rule(LinkExtractor(allow=r'^http:\/\/(www\.)?weibo.com/[a-z]/.*'),  # 微博个人页面的规则,或/u/或/n/后面跟一串数字
             process_request='process_request',
             callback='parse_item', follow=True), )
    cookies = None

    def process_request(self, request):
        link=request.url
        page = re.search('page=\d*', link).group()
        type = re.search('type=\d+', link).group()
        newrequest = request.replace(cookies =self.cookies, url='.../questionType?' + page + "&" + type)

        return newrequest

Logging

Scrapy提供了log功能,可以通过 logging 模块使用。

Log levels

Scrapy提供5层logging级别:

  • CRITICAL - 严重错误(critical)
  • ERROR - 一般错误(regular errors)
  • WARNING - 警告信息(warning messages)
  • INFO - 一般信息(informational messages)
  • DEBUG - 调试信息(debugging messages)

默认情况下python的logging模块将日志打印到了标准输出中,且只显示了大于等于WARNING级别的日志,这说明默认的日志级别设置为WARNING(日志级别等级CRITICAL > ERROR > WARNING > INFO > DEBUG,默认的日志格式为DEBUG级别

logging设置

通过在setting.py中进行以下设置可以被用来配置logging:

  • LOG_ENABLED 默认: True,启用logging
  • LOG_ENCODING 默认: 'utf-8',logging使用的编码
  • LOG_FILE 默认: None,在当前目录里创建logging输出文件的文件名
  • LOG_LEVEL 默认: 'DEBUG',log的最低级别
  • LOG_STDOUT 默认: False 如果为 True,进程所有的标准输出(及错误)将会被重定向到log中。例如,执行print("hello") ,其将会在Scrapy log中显示。
#coding:utf-8
######################
##Logging的使用
######################
import logging
'''
1. logging.CRITICAL - for critical errors (highest severity) 致命错误
2. logging.ERROR - for regular errors 一般错误
3. logging.WARNING - for warning messages 警告+错误
4. logging.INFO - for informational messages 消息+警告+错误
5. logging.DEBUG - for debugging messages (lowest severity) 低级别
'''
logging.warning("This is a warning")

logging.log(logging.WARNING,"This is a warning")

#获取实例对象
logger=logging.getLogger()
logger.warning("这是警告消息")
#指定消息发出者
logger = logging.getLogger('SimilarFace')
logger.warning("This is a warning")

#在爬虫中使用log
import scrapy
class MySpider(scrapy.Spider):
    name = 'myspider'
    start_urls = ['http://scrapinghub.com']
    def parse(self, response):
        #方法1 自带的logger
        self.logger.info('Parse function called on %s', response.url)
        #方法2 自己定义个logger
        logger.info('Parse function called on %s', response.url)

'''
Logging 设置
• LOG_FILE
• LOG_ENABLED
• LOG_ENCODING
• LOG_LEVEL
• LOG_FORMAT
• LOG_DATEFORMAT 
• LOG_STDOUT

命令行中使用
--logfile FILE
Overrides LOG_FILE

--loglevel/-L LEVEL
Overrides LOG_LEVEL

--nolog
Sets LOG_ENABLED to False
'''

import logging
from scrapy.utils.log import configure_logging

configure_logging(install_root_handler=False)
#定义了logging的些属性
logging.basicConfig(
    filename='log.txt',
    format='%(levelname)s: %(levelname)s: %(message)s',
    level=logging.INFO
)
#运行时追加模式
logging.info('进入Log文件')
logger = logging.getLogger('SimilarFace')
logger.warning("也要进入Log文件")

Settings

https://scrapy-chs.readthedocs.io/zh_CN/1.0/topics/settings.html
Scrapy设置(settings)提供了定制Scrapy组件的方法。可以控制包括核心(core),插件(extension),pipeline及spider组件。比如 设置Json Pipeliine、LOG_LEVEL

内置设置参考手册

  • BOT_NAME
    默认: scrapybot
    当您使用 startproject 命令创建项目时其也被自动赋值。

  • CONCURRENT_ITEMS
    默认: 100
    Item Processor(即 Item Pipeline) 同时处理(每个response的)item的最大值。

  • CONCURRENT_REQUESTS
    默认: 16
    Scrapy downloader并发请求(concurrent requests)的最大值。

  • DEFAULT_REQUEST_HEADERS 默认:

  {
      'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
      'Accept-Language': 'en',
  }

Scrapy HTTP Request使用的默认header。

  • DEPTH_LIMIT
    默认: 0
    爬取网站最大允许的深度(depth)值。如果为0,则没有限制。

  • DOWNLOAD_DELAY
    默认: 0
    下载器在下载同一个网站下一个页面前需要等待的时间。该选项可以用来限制爬取速度, 减轻服务器压力。同时也支持小数:DOWNLOAD_DELAY = 0.25 # 250 ms of delay
    该设置影响(默认启用的) RANDOMIZE_DOWNLOAD_DELAY 设置。 默认情况下,Scrapy在两个请求间不等待一个固定的值, 而是使用0.5到1.5之间的一个随机值 DOWNLOAD_DELAY 的结果作为等待间隔。

  • DOWNLOAD_TIMEOUT
    默认: 180
    下载器超时时间(单位: 秒)。

  • ITEM_PIPELINES
    默认: {}
    保存项目中启用的pipeline及其顺序的字典。该字典默认为空,值(value)任意。 不过值(value)习惯设置在0-1000范围内。
    样例:

  ITEM_PIPELINES = {
      'mybot.pipelines.validate.ValidateMyItem': 300,
      'mybot.pipelines.validate.StoreMyItem': 800,
  }
  • LOG_ENABLED
    默认: True
    是否启用logging。

  • LOG_ENCODING
    默认: 'utf-8'
    logging使用的编码。

  • LOG_LEVEL
    默认: 'DEBUG'
    log的最低级别。可选的级别有: CRITICAL、 ERROR、WARNING、INFO、DEBUG

  • USER_AGENT
    默认: Scrapy/VERSION (+http://scrapy.org)
    爬取的默认User-Agent,除非被覆盖。

Request/Response

https://docs.scrapy.org/en/latest/topics/request-response.html

Request 部分源码:

# 部分代码
class Request(object_ref):
    def __init__(self, url, callback=None, method='GET', headers=None, body=None, 
                 cookies=None, meta=None, encoding='utf-8', priority=0,
                 dont_filter=False, errback=None):

        self._encoding = encoding  # this one has to be set first
        self.method = str(method).upper()
        self._set_url(url)
        self._set_body(body)
        assert isinstance(priority, int), "Request priority not an integer: %r" % priority
        self.priority = priority

        assert callback or not errback, "Cannot use errback without a callback"
        self.callback = callback
        self.errback = errback

        self.cookies = cookies or {}
        self.headers = Headers(headers or {}, encoding=encoding)
        self.dont_filter = dont_filter

        self._meta = dict(meta) if meta else None

    @property
    def meta(self):
        if self._meta is None:
            self._meta = {}
        return self._meta

常用参数

url: 就是需要请求,并进行下一步处理的url

callback: 指定该请求返回的Response,由那个函数来处理。

method: 请求一般不需要指定,默认GET方法,可设置为"GET", "POST", "PUT"等,且保证字符串大写

headers: 请求时,包含的头文件。一般不需要。内容一般如下:

         # 自己写过爬虫的肯定知道
         Host: media.readthedocs.org
         User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64; rv:33.0) Gecko/20100101 Firefox/33.0
         Accept: text/css,*/*;q=0.1
         Accept-Language: zh-cn,zh;q=0.8,en-us;q=0.5,en;q=0.3
         Accept-Encoding: gzip, deflate
         Referer: http://scrapy-chs.readthedocs.org/zh_CN/0.24/
         Cookie: _ga=GA1.2.1612165614.1415584110;
         Connection: keep-alive
         If-Modified-Since: Mon, 25 Aug 2014 21:59:35 GMT
         Cache-Control: max-age=0

meta: 比较常用,在不同的请求之间传递数据使用的。字典dict型

         request_with_cookies = Request(
             url="http://www.example.com",
             cookies={'currency': 'USD', 'country': 'UY'},
             meta={'dont_merge_cookies': True}
         )

encoding: 使用默认的 'utf-8' 就行。

dont_filter: 表明该请求不由调度器过滤。这是当你想使用多次执行相同的请求,忽略重复的过滤器。默认为False。

errback: 指定错误处理函数

Response

# 部分代码
class Response(object_ref):
    def __init__(self, url, status=200, headers=None, body='', flags=None, request=None):
        self.headers = Headers(headers or {})
        self.status = int(status)
        self._set_body(body)
        self._set_url(url)
        self.request = request
        self.flags = [] if flags is None else list(flags)

    @property
    def meta(self):
        try:
            return self.request.meta
        except AttributeError:
            raise AttributeError("Response.meta not available, this response " \
                "is not tied to any request")

大部分参数和上面的差不多:

status: 响应码
_set_body(body): 响应体
_set_url(url):响应url
self.request = request

Downloader Middlewares

https://docs.scrapy.org/en/latest/topics/downloader-middleware.html

下载中间件是处于引擎(crawler.engine)和下载器(crawler.engine.download())之间的一层组件,可以有多个下载中间件被加载运行。

当引擎传递请求给下载器的过程中,下载中间件可以对请求进行处理 (例如增加http header信息,增加proxy信息等);

在下载器完成http请求,传递响应给引擎的过程中, 下载中间件可以对响应进行处理(例如进行gzip的解压等)

要激活下载器中间件组件,将其加入到 DOWNLOADER_MIDDLEWARES 设置中。 该设置是一个字典(dict),键为中间件类的路径,值为其中间件的顺序(order)。

这里是一个例子:

DOWNLOADER_MIDDLEWARES = {
    'mySpider.middlewares.MyDownloaderMiddleware': 543,
}

编写下载器中间件十分简单。每个中间件组件是一个定义了以下一个或多个方法的Python类:

class scrapy.contrib.downloadermiddleware.DownloaderMiddleware

process_request(self, request, spider)

  • 当每个request通过下载中间件时,该方法被调用。

  • process_request()必须返回以下其中之一:一个 None 、一个 Response 对象、一个 Request 对象或 raise IgnoreRequest:

  • 如果其返回 None ,Scrapy将继续处理该request,执行其他的中间件的相应方法,直到合适的下载器处理函数(download handler)被调用, 该request被执行(其response被下载)。

  • 如果其返回 Response 对象,Scrapy将不会调用 任何 其他的 process_request() 或 process_exception() 方法,或相应地下载函数; 其将返回该response。 已安装的中间件的 process_response() 方法则会在每个response返回时被调用。

  • 如果其返回 Request 对象,Scrapy则停止调用 process_request方法并重新调度返回的request。当新返回的request被执行后, 相应地中间件链将会根据下载的response被调用。

  • 如果其raise一个 IgnoreRequest 异常,则安装的下载中间件的 process_exception() 方法会被调用。如果没有任何一个方法处理该异常, 则request的errback(Request.errback)方法会被调用。如果没有代码处理抛出的异常, 则该异常被忽略且不记录(不同于其他异常那样)。

  • 参数:

request (Request 对象) – 处理的request
spider (Spider 对象) – 该request对应的spider

process_response(self, request, response, spider)

  • 当下载器完成http请求,传递响应给引擎的时候调用

  • process_request() 必须返回以下其中之一: 返回一个 Response 对象、 返回一个 Request 对象或raise一个 IgnoreRequest 异常。

  • 如果其返回一个 Response (可以与传入的response相同,也可以是全新的对象), 该response会被在链中的其他中间件的 process_response() 方法处理。

  • 如果其返回一个 Request 对象,则中间件链停止, 返回的request会被重新调度下载。处理类似于 process_request() 返回request所做的那样。

  • 如果其抛出一个 IgnoreRequest 异常,则调用request的errback(Request.errback)。 如果没有代码处理抛出的异常,则该异常被忽略且不记录(不同于其他异常那样)。

  • 参数:

request (Request 对象) – response所对应的request
response (Response 对象) – 被处理的response
spider (Spider 对象) – response所对应的spider

你可能感兴趣的:(scrapy入门(一))