Python OpenCV 365 天学习计划,与橡皮擦一起进入图像领域吧。本篇博客是这个系列的第 54 篇。
该系列文章导航参考:https://blog.csdn.net/hihell/category_10688961.html
上篇 OpenCV 博客原计划完成一个 识别银行卡号 的项目,但是写的过程中发现,技术储备不足,我无法在下述图片中,提取出卡号区域,也就无法进行后续的识别了,再次意识到了自己技术还不达标,继续学习。完不成,就实现其它学习项目。
先看一下最终实现的效果,针对一张图片(该图片前景色和背景色差异较大),进行轮廓标记。
import cv2 as cv
src = cv.imread("./demo.jpg")
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# cv.imshow("src", src)
gray = cv.GaussianBlur(gray, (5, 5), 0)
edges = cv.Canny(gray, 70, 210)
cv.imshow("edged", edges)
转换成灰度图,高斯模糊去噪,Canny 边缘检测,这些都是图像处理的基本函数,使用方法已经在前文进行过相关学习。
运行上述代码之后,获取基本边缘数据。
下面就是检测图像轮廓具体位置的代码了:
contours, hierarchy = cv.findContours(edges.copy(), cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
print(f"轮廓数量:{len(contours)}")
在 cv.findContours(edges, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
中,第二个参数使用的是 cv.RETR_LIST
,该参数值表示检测所有轮廓,不建立等级关系,彼此独立。如果只想获取轮廓边缘信息,不关心是否嵌套在另一个轮廓之内,使用该参数值即可。
第三个参数使用的是 cv.CHAIN_APPROX_SIMPLE
,表示压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需 4 个点来保存轮廓信息,这也是为了后面便于计算。
观察上图,可以发现最外侧的边缘面积是最大的,所以依据面积进行排序,依据其他值也可以,获取面积最大的轮廓。
contours = sorted(contours, key = cv.contourArea, reverse = True)[:3]
对轮廓进行简单绘制,获得下图效果。
cv.drawContours(src,contours,-1,(0,0,255),2)
先看代码:
# 遍历轮廓
for c in contours:
# 计算轮廓近似
peri = cv.arcLength(c, True)
approx = cv.approxPolyDP(c, 0.02 * peri, True)
一个新的函数 cv.arcLength
,该函数的原型如下:
retval = cv2.arcLength(curve, closed)
该函数用于计算轮廓的周长。
下面的 cv.approxPolyDP
函数原型如下:
approxCurve = cv2.approxPolyDP(curve, epsilon, closed[, approxCurve])
函数参数如下:
curve
:源图像的某个轮廓;epsilon
:距离值,表示多边形的轮廓接近实际轮廓的程度,值越小,越精确;closed
:轮廓是否闭合。最重要的参数就是 epsilon
简单记忆为:该值越小,得到的多边形角点越多,轮廓越接近实际轮廓,该参数是一个准确度参数。
该函数返回值为轮廓近似多边形的角点。
最后判断,当上文返回的角点为 4 的时候,提取轮廓,代码如下:
# 遍历轮廓
for c in contours:
# 计算轮廓近似
peri = cv.arcLength(c, True)
approx = cv.approxPolyDP(c, 0.02 * peri, True)
# 当恰好是 4 个角点的时候,获取轮廓。
if len(approx) == 4:
screen_cnt = approx
break
# 结果显示
cv.drawContours(src, [screen_cnt], -1, (0, 0, 255), 2)
更换图片,进行再次轮廓检测,注意修改轮廓近似部分代码即可。
# 遍历轮廓
for c in contours:
# 计算轮廓近似
approx = cv.approxPolyDP(c, 30, True)
if len(approx) == 4:
screen_cnt = approx
break
希望今天的 1 个小时(貌似不太够)你有所收获,我们下篇博客见~
相关阅读
技术专栏
今天是持续写作的第 105 / 200 天。
如果你想跟博主建立亲密关系,可以关注同名公众号 梦想橡皮擦,近距离接触一个逗趣的互联网高级网虫。
博主 ID:梦想橡皮擦,希望大家点赞、评论、收藏。