玩转生存分析,这一篇就够了

1. 导入数据

library(tidyverse)
library("survival")
library("survminer")

test_data=read.table("survival.txt",header = T,sep = "\t",stringsAsFactors = F)
test_data$over55=ifelse(test_data$age >= 55,1,0)
test_data$over55=as.factor(test_data$over55)
test_data$drug=as.factor(test_data$drug)

head(test_data)
# studytime died drug age over55
# 1         1    1    0  61      1
# 2         1    1    0  65      1
# 3         2    1    0  59      1
# 4         3    1    0  52      0
# 5         4    1    0  56      1
# 6         4    1    0  67      1

summary(test_data)
# studytime          died        drug        age        over55
# Min.   : 1.00   Min.   :0.0000   0:20   Min.   :47.00   0:19  
# 1st Qu.: 7.75   1st Qu.:0.0000   1:28   1st Qu.:50.75   1:29  
# Median :12.50   Median :1.0000          Median :56.00         
# Mean   :15.50   Mean   :0.6458          Mean   :55.88         
# 3rd Qu.:23.00   3rd Qu.:1.0000          3rd Qu.:60.00         
# Max.   :39.00   Max.   :1.0000          Max.   :67.00

attach(test_data)

注意,因为我为了自动补全变量名,使用了attach()。如果没有用这个,像survfit() coxph()这些函数还需要加上data参数

2. KM生存曲线

drug_KM=survfit(Surv(studytime,died) ~ drug,data=test_data)
ggsurvplot(drug_KM,data=test_data,legend.title = "drug",pval = TRUE,pval.method=T,palette=c("red","blue"))
ggsave("drug.png",width = 5,height = 5)
over55_KM=survfit(Surv(studytime,died) ~ over55,data=test_data)
ggsurvplot(over55_KM,data=test_data,legend.title = "over55",pval = TRUE,pval.method=T,palette=c("red","blue"))
ggsave("over55.png",width = 5,height = 5)
玩转生存分析,这一篇就够了_第1张图片
玩转生存分析,这一篇就够了_第2张图片

3. COX比例风险模型

用两个变量进行Cox-PH model,都是分类变量,当然数值变量也可以做

cox.mod=coxph(Surv(studytime,died) ~ drug + over55)
#描述一下
summary(cox.mod)
# Call:
#   coxph(formula = Surv(studytime, died) ~ drug + over55)
# 
# n= 48, number of events= 31 
# 
# coef exp(coef) se(coef)      z Pr(>|z|)    
# drug1   -2.2632    0.1040   0.4582 -4.940 7.82e-07 ***
#   over551  0.9274    2.5278   0.3935  2.356   0.0184 *  
#   ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# exp(coef) exp(-coef) lower .95 upper .95
# drug1       0.104     9.6135   0.04238    0.2553
# over551     2.528     0.3956   1.16888    5.4668
# 
# Concordance= 0.784  (se = 0.039 )
# Likelihood ratio test= 31.03  on 2 df,   p=2e-07
# Wald test            = 26.92  on 2 df,   p=1e-06
# Score (logrank) test = 34.49  on 2 df,   p=3e-08
  • exp(coef)就是HR,0.104表示:在控制年龄的情况下,用药的人死亡可能性是没有用药的人的0.104倍
  • exp(-coef)为9.6135的解释刚好反过来,表示:在控制年龄的情况下,没有用药的人死亡可能性是用药的人的9.6135倍
  • Concordance表示预测一致性
  • 后面有三个假设:零假设是b1=b2=b3=...=b_k=0,表征的是模型整体的显著性

4. 森林图

一般文献里面比较关心HR,我们可以用森林图来表示

ggforest(cox.mod, main = '',data = test_data)
ggsave(filename = "cox.mod.png",device = "png",width = 20,height = 10,units = c("cm"))
玩转生存分析,这一篇就够了_第3张图片

有时候也能看到KM曲线里面加HR的图,这需要结合KM的结果和COX的结果。
到这里,对于paper的画图已经足够了,如果想深入了解Cox比例风险模型,可以看看下面的内容

5. 采用某个变量前后的模型比较

用LRT (likelihood ratio tests) 比较嵌套模型(一个模型含有另一个模型的全部变量),零假设是两个模型没有差异

cox.mod=coxph(Surv(studytime,died) ~ drug + over55)
cox.mod2=coxph(Surv(studytime,died) ~ over55)
anova(cox.mod2,cox.mod,test = "LRT")
# Analysis of Deviance Table
# Cox model: response is  Surv(studytime, died)
# Model 1: ~ over55
# Model 2: ~ drug + over55
# loglik  Chisq Df P(>|Chi|)    
# 1 -98.062                        
# 2 -83.994 28.136  1 1.131e-07 ***

p值很小,说明有差异,所以我们不能去掉drug变量

6. cox模型也能用数值型变量

cox.mod3=coxph(Surv(studytime,died) ~ age)
summary(cox.mod3)

exp(coef)等于1.08表示:每增加1岁,风险增加0.08

7. 检查COX PH model的假设

  1. check linearity
    模型中有数值型变量
    线性回归里面也有这一步,方法类似
  2. check the proportional hazard's assumptions
    可以简单理解为某个变量对结局事件的影响(回归得到的系数)不随时间而改变
cox.mod4=coxph(Surv(studytime,died) ~ age)
png("Martingale_residuals.png")
plot(predict(cox.mod4),residuals(cox.mod4,type = "martingale"),
     xlab = "fitted values",ylab = "Martingale residuals",
     main = "Residual Plot",las=1)
#加水平线
abline(h=0)
#画残差的拟合线
lines(smooth.spline(predict(cox.mod4),residuals(cox.mod4,type = "martingale")),col="red")
dev.off()
玩转生存分析,这一篇就够了_第4张图片

换一种残差检查线性,deviance residuals

png("deviance_residuals.png")
plot(predict(cox.mod4),residuals(cox.mod4,type = "deviance"),
     xlab = "fitted values",ylab = "Deviance residuals",
     main = "Residual Plot",las=1)
abline(h=0)
lines(smooth.spline(predict(cox.mod4),residuals(cox.mod4,type = "deviance")),col="red")
dev.off()
玩转生存分析,这一篇就够了_第5张图片

check proportional hazards assumption
using Schoenfeld test for PH, Ho: HAZARDS are prop, Ha: HAZARDS are NOT prop
结果会返回每个变量,以及整体的p值

cox.zph(cox.mod4)
# chisq df    p
# age    0.662  1 0.42
# GLOBAL 0.662  1 0.42

p值较大可以接受原假设。

也可以看某个变量的系数(β)是不是随着时间而改变,如果是(也就是说HR随时间而改变),则说明为non-prop hazard

par(mfrow=c(1,1))
png("cox.zph.png")
plot(cox.zph(cox.mod4)[1])
dev.off()
detach(test_data)
玩转生存分析,这一篇就够了_第6张图片

你可能感兴趣的:(玩转生存分析,这一篇就够了)